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Foreword

There has been tremendous growth in the field of civil engineering in recent times.
The structures have evolved from being simple and straightforward in configura-
tion to more complex ones in terms of shape, geometry and design requirements.
Modern-day architecture demands very intricate structural design in making a built
environment efficient and sustainable. In the era of fast-paced growth, there are
numerous finite element packages available to reduce the computational effort and
time. However, one should have a strong foothold in the basic concepts of structural
engineering as most of the numerical work is handled by computer.

This book addresses the basic structural forms such as orthogonal and non-
orthogonal planar frames, space frames and trusses that go into the making of com-
plicated structures. The approach adopted is based on the intuition that an engineer’s
ability to perceive a concept is through simple models. Numerous examples have
been included to illustrate the fundamental concepts more clearly. Hence, in addition
to conceptual understanding, an effort is made to include the basics of computation
with detailed examples. The book consists of five chapters.

The analysis steps have been explained in a classroom style of teaching and the
computer programs for MATLAB® platform have been introduced in the form of
examples. These computer programs cover matrix operation for a variety of struc-
tural forms and responses. The illustrative examples in the book enhance the under-
standing of the structural concepts stimulating interest in learning, creative thinking
and design. In conclusion, the book stems from a void in conceptual understand-
ing of the structural behavior, based on problem solving experience with students
exposed to engineering mechanics and mechanics of materials.

The author of this book, Professor Srinivasan Chandrasekaran, is a renowned
teacher and researcher with diverse industrial experience in structural engineering.
He has already authored many peer-reviewed journal articles, conference papers,
textbooks and reports on international projects. His rich expertise and experience in
the teaching of fundamentals of structural analysis at IIT Madras has been brought
out now in the form of this new book. I strongly believe this textbook to be an ideal
resource for students and teachers, and a comprehensive reference for practitioners.
I congratulate Professor Chandrasekaran for his total commitment to the advance-
ment of technical education. I hope that many will learn from this book and apply its
principles in their profession.

Katta Venkataramana

Professor, National Institute of Technology
Suratkal, India
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Preface

Analysis of civil engineering structures is becoming more complex essentially
due to different structural forms that are conceived by architects and engineers to
accommodate various functional requirements. Conventional analysis tools guide
engineering graduates and practicing professionals in addressing such issues, but
accuracy and compactness, in terms of varied solutions, are difficult. Matrix meth-
ods in general, and the stiffness method in particular, are very powerful tools to
model complicated structural forms and to perform the required analysis. However,
the application of matrix algorithms in a more generic form to solve all types of
problems, namely beams, trusses, planar orthogonal frames, planar non-orthogonal
frames, three-dimensional trusses and space frames, needs to be addressed in a step-
by-step manner to resolve all possible doubts that may arise during solution proce-
dures. While acknowledging the ingenious efforts made by authors from all over the
world on this front, this book is a humble attempt to revisit these concepts with more
elaborate explanations and very strong hand-supportive computer coding. One of the
main objectives of this book is to help solve problems using matrix methods along
with a familiarization of computer coding to solve such problems. MATLAB® is a
well-established and proven tool to handle such complex problems in a very simple
and highly supportive manner.

This book starts with an analysis of beams and planar orthogonal frames, and it
also addresses problems of truss elements, special elements, planar non-orthogonal
frames, three-dimensional trusses and space frames. One of the most attractive fea-
tures of this book is how it explains the problem solution which is highly compatible
with computer coding using MATLAB. Each problem is carefully examined and
degrees-of-freedom (both restrained and unrestrained) are marked in a more generic
manner with a uniform sign convention throughout the text of this book. Matrix for-
mulation of the problem is clearly presented step by step; this is also followed while
writing the computer code for solving the problem. Example problems given in each
chapter are solved using MATLAB coding, while input data to use the coding is
explained in detail. The output obtained from the coding is plotted as a screenshot
for better inference of results. Numerous exercise problems are given along with
solutions that enable the readers to use the same computer code with a minor modi-
fication to suit the inputs for the problems.

One of the salient features of this book is that similar computer code as that
for two-dimensional is used for three-dimensional analysis, except transformations
that are required from local to global axes systems. The book also supports many
practice papers to ensure a high level of confidence while solving such problems. A
Solutions Manual and additional instructor resources are available as downloadable
e-resources on the book’s CRC Press webpage at https:/www.crcpress.com/Advan
ced-Structural-Analysis-with-M ATLAB/Chandrasekaran/p/book/978036702645
5. MATLAB files are also available in downloadable format on same webpage.
The author sincerely thanks the Centre for Continuing Education, Indian Institute
of Technology (II'T) Madras, for extending administrative support in preparing the
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X Preface

manuscript of this book. The author also thanks MATLAB for permitting usage of
MATLAB codes throughout the text of this book.

The computer programs used in the book are written using MATLAB, follow-
ing well-established programming concepts. Program coding is written following
the same steps as those for conventional analysis using the stiffness method. The
program codes were written by Nagavinothini.R and verified by a team of research
scholars, Department of Ocean Engineering, IIT Madras. Nagavinothini.R is senior
research scholar in the Department of Ocean Engineering at IIT Madras, Chennai,
India. She is currently working on dynamic analysis of offshore new generation com-
pliant platforms in ultra-deep waters under environmental and accidental loads. She
is a University Rank Holder and Gold Medalist, who has published many research
papers in refereed journals. Her research interests include dynamic analysis of struc-
tures, computer-aided analysis of structures, design and optimization of structures.

Utmost care has been taken to check solutions and to correct errors, but the author
does not claim or guarantee the correctness of outputs using the provided computer
codes. Readers are asked to verify based on their independent capacity and then use
the codes for practical applications.

Srinivasan Chandrasekaran
Department of Ocean Engineering
Indian Institute of Technology
Madras, India

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com
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Author

Srinivasan Chandrasekaran is a professor in the Department of Ocean Engineering,
Indian Institute of Technology Madras, India. He has more than 24 years of teaching,
research and industrial experience, during which he has supervised many sponsored
research projects and offshore consultancy assignments both in India and abroad. He
has also been a visiting fellow at the University of Naples Federico II, Italy (MIUR
Fellow), during which time he conducted research on advanced nonlinear modeling
and analysis of structures under different environmental loads with experimental
verifications. He has published approximately 130 research papers in international
journals and refereed conferences organized by professional societies around the
world. He has also authored textbooks, which are quite popular among graduate stu-
dents in civil and ocean engineering. He is a member of many national and interna-
tional professional bodies and delivered many invited lectures and keynote addresses
at international conferences, workshops and seminars organized in India and abroad.
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Planar Orthogonal
Structures

1.1 INTRODUCTION TO STRUCTURAL ANALYSIS

The first and foremost step in structural analysis is problem formulation using an
appropriate mathematical model. There are two models widely used in classical
structural analysis, namely: (1) the statically determinate model and (2) the statically
indeterminate model. Statically determinate models are relatively easier as they use
only the basic equations of static equilibrium to solve the problem. Hence, one should
look for ways to solve problems related to statically indeterminate models through
computer methods. In order to solve the problems, it is important to formulate a stan-
dard procedure, which should be generic in nature and not problem-specific. Thus, it
is important to note that the models should be restrained from any action to enable
solution of the problem by using a standard equation of statics. This can be done by
grouping the formation. Grouping is done through two methods, namely: (1) the flex-
ibility method; and (2) the stiffness method.

Both of the previously mentioned methods are frequently used to simplify the
model to be solved by using only the standard equation of statics. Both methods are
equally powerful and useful; there is no supremacy of one method over the other. Any
method can be used for grouping based on the user’s convenience. But, a method that
is easily programmable is preferred, as the main objective of this book is to make
the problems solvable through computer methods. There is a significant difference in
identifying the unknowns for formulating the problem. In the flexibility method, the
unknowns are actions such as shear force, axial force and bending moment. In the
stiffness method, however, the unknowns are displacements such as translational and
rotational displacements. Basic assumptions applicable to both methods are as follows:

1. A linear relationship exists between an applied load and the resulting dis-
placement of the structure. This makes the principle of superposition valid
through the formulation.

2. The material of the structure must obey Hooke’s Law, which says that the
material must not be stressed beyond its elastic limit.

3. The equations of static equilibrium shall be developed using the geometry
of the un-deflected model. The change in geometry caused by the imposed
loads is negligible when compared to original geometry.

1.2 INDETERMINACY

Both flexibility and stiffness methods circumscribe the problem formulations around
the term indeterminacy. It is important to understand indeterminacy in terms of

1



2 Advanced Structural Analysis with MATLAB®

problem formulation by either the flexibility or the stiffness method. There are two
types of indeterminacy, namely:

1. Static indeterminacy
2. Kinematic indeterminacy

1.2.1

Static indeterminacy is the term related to the flexibility approach. It is defined as the
number of actions (e.g. shear force, axial force, bending moment) that can be either
external or internal, that must be released in order to transform the structural sys-
tem into a stable statically determinate system. Thus, the objective is to convert the
known structural system into a statically determinate and stable system, for which the
number of actions has to be identified. The degree of static indeterminacy is defined
as the number of released actions, which specify the number of special independent
equations that must be developed in terms of the released actions to analyze the sys-
tem. So, the approach used in the formulation and solution is the flexibility approach.

STATIC INDETERMINACY

1.2.2 KINEMATIC INDETERMINACY

Kinematic indeterminacy is the term related to the stiffness approach. It refers to the
number of independent components of joint displacements (both translational and
rotational) with respect to a specified coordinate axis that is required to describe the
response of the system under any arbitrary load. It can be seen that the kinematic
indeterminacy or stiffness method is trying to reach a generic solution. This problem
formulation needs to identify the number of independent displacement components,
which will be invoked under the external forces acting on the system of any nature.
It is important to note that the structure must be restrained to convert or transform
the system into a kinematically determinate structure. A structure with all joint dis-
placements restrained is the formulation. The degree of kinematic indeterminacy is
defined as the number of unrestrained components of the joint displacements (both
rotational and translational). It is important to know that the degree of kinematic
indeterminacy specifies the number of independent equations that must be written in
terms of unrestrained displacements, if the system is to be analyzed using the stiff-
ness approach.

The differences between flexibility and stiffness methods are summarized as
follows:

Flexibility Approach

This deals with static indeterminacy

The unknowns are actions such as shear force,
axial force, bending moments, etc.

The problem formulation converts the structural
system into a statically determinate structure

Stiffness Approach

This deals with kinematic indeterminacy
The unknowns are joint displacements such as
rotational and translational displacements

The problem formulation converts the structural
system into a kinematically determinate structure.
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Thus, the static and kinematic indeterminacies of any structural system are indi-
cators of the amount or extent of computational effort required to analyze the struc-
tural system either using the flexibility approach or the stiffness approach. It is clear
that the structural analysis can be carried out by any of the two methods, which are
equally useful and powerful numerically. The unknowns are released to convert the
structural system into a statically or kinematically determinate system, so that the
standard equations can be used to solve the system under applied loads.

If the problem formulation reduces the number of unknowns, then it is the best
formulation attempted by a mathematician or an engineer. The number of unknowns
in the system of equations purely depends on the choice of the method demanded.
For a computer method of structural analysis, one should keep in mind that the
method recommended should be more or less generic and not problem-specific.
The degree of static and kinematic indeterminacies of standard problems are given
subsequently.

1.2.2.1 Continuous Beam

Consider a continuous beam of three spans with one hinged joint and three roller
joints with reactions R1, R2, R3 and R4, as shown in Figure 1.1. The displacement
unknowns, neglecting axial deformations are 01, 62, 83 and 64. We all know that
there are three systems of standard equations available to solve the problem. The
degree of static indeterminacy and the degree of kinematic indeterminacy are as
follows:

Degree of static indeterminacy = Number of unknown reactions
—system of standard equations
=5-3=2.

Degree of kinematic indeterminacy = Number of displacements
=4

1.2.2.2 Fixed Beam

Let us now consider a fixed beam with reactions R, R, and R; at support A. Similarly,
the reactions at support B are R,, Ry and R, as shown in Figure 1.2. The rotational
displacement which is free to move is zero. Thus,

Degree of static indeterminacy=6—-3=3

Degree of kinematic indeterminacy =0

04 05 0 6,
R PN
{@\: ™ STV ol

f

1 R3 Ry Rs

-2

FIGURE 1.1 Continuous beam.
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% SC/IITM F »

FIGURE 1.2 Fixed beam.

1.2.2.3 Simply Supported Beam

Let us consider a simply supported beam with reaction components R;, R, and R;.
The displacements are 0, and 6, as shown in Figure 1.3. Thus,

Degree of static indeterminacy=3-3=0

Degree of kinematic indeterminacy =2

1.2.2.4 Frame

Let us consider a single story single bay frame with one end fixed and the other end
on a roller support as shown in Figure 1.4. The unknown reactions are R, R,, R,

0,

VA N
'\4&‘ SC/IITM ‘“gm

f f

R, Rs

FIGURE 1.3  Simply supported beam.

0, 0,

0N A

SC/IITM

L g

G\ Y i\

FIGURE 1.4 Single story single bay frame.
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R4 and R5. The independent displacements are 6,, 6,, 8; and 9, by neglecting axial
deformation.

Degree of static indeterminacy=5-3=2

Degree of kinematic indeterminacy =4

From the previous examples, it can be seen that the number of unknowns is dif-
ferent depending on the choice of method. In order to summarize for the choice
of method of analysis which governs the system of equations, the following is
noteworthy:

1. There are essentially two methods to solve the statically indeterminate
structures, such as the flexibility method and stiffness method. So, the
choice of the method depends on the computational convenience.

2. For the flexibility method, there are several alternatives for the redundant or
unknowns. Thus, the choice of the redundant has a significant effect on the
computational effort.

3. On the other hand, there is no choice of unknown quantities in the stiffness
method because there is only one possible restrained structure. Therefore,
this has a set of standard procedures.

4. Based on computer methods of structural analysis, one can say that the
choice of the method should not be geometry specific. It should be more
generic and repetitive in nature.

Thus, the stiffness method is a better choice fulfilling all the previously men-
tioned requirements. In this book, the stiffness method is used for elaborating the
application procedures. After identifying the variables in a given system, such as
rotational or translational displacements for every joint, it will result in the formation
of a set of linear equations.

1.3 LINEAR EQUATIONS
A system of ‘m’ linear equations with ‘n’ unknowns is expressed as follows:
ap X, +apx, +...+a,x, = b]

Ay X) +apXy +...+a,X, = b2 (11)

A X1 + A Xy + ...+ QX = by,
The previous set of equations can be written in matrix form as follows:

an ayp iy || %1 by
dy Ay Ay |\ X% =102

(2] (27%) Ay Xn bm
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[A]{x) =8} 12)
Pre-multiply the previous equation with A=' on both sides,
(AT [AJ{x} =[AT" {8}
[1]{x =[] {B)
tx}=[A]" {8} (13)

Thus, the previous equation gives the unknown ‘x’ by multiplying the inverse of the
matrix A and B vector. Now, the problem is to compute the inverse of a matrix.

1.3.1 INVERSE OF A MATRIX

Inverse of matrix A is given by,

AT = @iA (1.4)
[4] 4

In a given square matrix, replace each element a;; of the matrix [A] by its cofactor
;. Transform the cofactor matrix to obtain adjoint matrix. The following simple
example will give the procedure to find the inverse of matrix.

15 2
Consider a matrix, A=| 0 4 1|.Find[A]" by adjoint method.
0 2 1

A =1{(4x1)-(2x1)} =2

Cofactors are given by,

ay =(-1)" ; 1 =2
ap =(-1)" g i =0
an=(-1)" 8 ; =0
oz =(-1)" ; ? —-1
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wll 2
(X,zz :(_1)2 ’ 0 1:1
23l 5
(X23:(—1) ! 0 ) =-2
sy _(_1)3+1 5 2 :_3
1
a2l 2
OL32 :(_1)% ’ 0 1 :—1
3l 5
O3 :(_1)3-%-3 0 4:4
The cofactor matrix is written as:
2 0 0
oy =|-1 1 =2
-3 -1 4
2 4 3
AdjA=[a;] =0 1 -1
0o =2 4
Thus,
. -4 -3 1 1/2 -=3/2
[A]":adiA% 0 1 ~1|={0 1/2 -1/2
‘ ‘ 0o 2 4 0 -1 2
To check:
1 1/2 -=3/2 1 5 2 1 0
Al [A]l=l0 1/2 -=1/2|x|0 4 1|=|[I]|=]|0
1

o -1 2 110 2 1 0 0

1.3.2 SoLuTtioN ofF LINEAR EQUATIONS

Let us express the matrix A as a system of equations,
X1 +5)C2 +2X3 =2

4xZ+X3 =5
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2.)(:2+X3 =4

Now, these set of equations have to be solved to get the variables (x;, x,, x5). In matrix
form, the equations can be written as follows:

(1 5 2](x 2
0 4 1[{xp=145
_0 2 1 X3 4

2] [1 12 =3/2)(2] [-65
ni=[A]'45t=(0 1/2 -1/2]i5¢=105
4 lo -1 2 ||4 |3

X

X3

If one can generate a system of equations with unknowns as variables, then this set
of equations can be solved using matrix inversion. This is an easy method to solve
for the variable as given by equation 1.3.

txf=[a]"{B}

This is true only when [AT exists. It should also be noted that {x} purely depends
on {B} and [A]_l does not change to get the value of {x} Assume matrix A as a
stiffness matrix of a given system, B as a load vector and x as a displacement vector.
Through this comparison, it can be seen that the value of the displacement vector
for a changed load vector can be found without changing the inverse of the stiffness
matrix. In the case that {B} is zero and when [A " also exists, then the possible
solution is said to be a trivial solution, that is, x=0. In this case, |: A]_l does not exist,
then the previous set of equations will lead to non-trivial solution.

1.4 MATRIX OPERATIONS

1.4.1 SUBMATRIX

Let A be the given matrix, then the submatrix is defined as a matrix formed by deleting

specified rows and columns of the matrix A. Instead of deleting the rows and columns,

partitioning can also be done. This is a useful technique when the matrix size is very large.
Let us assume a set of algebraic equations as follows:

yi = ap X +apnx, +...+a1qxq + a1, g+1Xg+1 +...+a,x,

Yo =ax X +anx, +...+aquq +az’q+]xq+1 +...+a,x,

(1.5)

Yo = a,Xy +a,nx, +...+ anq.xq + an’q+1xq+1 +...+a,,x,
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Then, the previous set of equations can also be grouped.
V= (a“xl + a;pXy +...+ aquq)+ (al,qul-qurl +...+ al,,x,,)
Yo = ((121)(1 +ayx,+...+ aquq)+ (az,q+1xq+l +...+ azn.x,,) (16)
Yn = (anl-xl +anX ...+ a,yX, ) + (an,qﬂxqﬂ +...+ a,mx,,)
Now let us express both sets of equations in matrix form:
i ap ap g || X Ay g+1 s Qi || Xg1
Yap=|Ga Gp  Gyq [\ X2pt|Grgea oo Goy |\ Xgr2 1.7)
Yn Ay (2% anq xq an,q+l cee Ay Xn
Now the vector y can be written as,
p =l f+[4]{x} (1.8)

where,

|:A1] =|da dn Ay

(21 (2%) anq
al,q+1 e ay,
[Az] =| Arg+2 cee Uy
an,q_'_l e a,,
X
faj=1x
'xq
Xg+1
{xz} = Xg+2
Xn

There should be a perfect compatibility among the multiplying matrices, shown as follows:

{y}nxl = I:Al ]nxq {xl}qxl + I:Azilnx(n—q) {xz}(n—q)xl

(1.9)

The number of columns and the number of rows of the adjacent multipliers should
be same. The compatibility is required to ensure grouping. Now, it can be said
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that [AI:| is a submatrix of [A] of size "% ¢ and [Az] is a submatrix of [A] of size
nX(n-gq).

1.4.2 PARTITIONING OF MATRIX

Let,
{rp=[alf~) (1.10)
After partitioning,
{x}
h=[[a] 1t [4a]] - (1.11)
{x}
Thus,

{y}=[A J{x}+[ 4 ]{x} (1.12)

The previous equation is called partitioned matrix. Matrix [A] is vertically parti-
tioned and vector {x} is horizontally partitioned. To make the valid partition of [A]
and {x}, it is important to establish compatibility; that is, the number of columns of
[A,] must correspond to the number of rows of {x,}, to make [A,]{x,} valid.

1.4.3 CROSS-PARTITIONING OF MATRIX

i =[alix

Let [A] be partitioned both horizontally and vertically into submatrices,

[Alll,xq |:A12:|p><(n—q)

[ A] = (1.13)
Let {x} also be portioned horizontally,
X
{40 = {{ o (1.14)

X2 }(n—q)xl

nx1

Therefore, the resulting matrix {y} will also be a horizontally partitioned matrix.

.
D=1 " (115)
2 (m=p)x1

mx1
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Therefore,

{?} :{[Au] ! [An]} {ﬁ} (1.16)
{2} bel

[An] 1 [Ax]
This means that the matrix [A], which has both a horizontal and vertical partitioning,
is called a cross-portioned matrix.
Once portioning is done, the following equations are valid.

nf =LA J{af+[ 42 =]
{J’2} =|:A21]{x1}+|:A22:|{x2} (L.17)

The inverse is also valid for a partitioned matrix, which is very advantageous.
Let [A] be the following matrix with horizontal and vertical partitioning,

1 4 0 0

2 2 0 0
A:

0 0 3 -1

0O 0 -5 2

Now, [A] can be written as,

el

It can also be written as,

P

0 [Axn ]

Now, A~! can also be expressed as a set of submatrices as follows:

] ]

where,
[ Bi] = Inverse of [ A | =0

[le] = Inverse of [A2|] =0

[Bu] = Inverse Of[AH]=_16{_22 _14}
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[Bzz:| = Inverse of [A22:| :E ﬂ

-1
Now the advantage is that [A] can be easily written as:

-1/3 2/3 0 O

I:ATIZ /73 -1/6 0 O
0 0 2 1

0 0 5 3

Thus, determining the inverse of the 4 X 4 matrix is made easier with cross-partition-
ing of the matrix. Partitioning benefits inverting a 2 X2 matrix, instead of a 4 x4.
This can lead to substantial savings in time and computational efforts.

1.4.4 BANDED MATRIX

Matrices in structural analysis show certain special properties. The matrices are
real, symmetric, positive definite and banded. They can be utilized for solving a
large system of equations. Given matrix [A] is said to be positive definite only when
the following condition is satisfied.

XTAX >0, for all non-zero column matrix of {x}

For example, consider the following matrix:

(ay a, O 0 0 0]
ay Ay a4y 0 0 0
A= 0 azx  d33 43 0 0
0 0 A3 Agg s 0
0 0 0 sy  dss  dse
| 0 0 0 0 Qgs  es |

[A] is said to be a banded matrix with width (2m+1) if all elements of a; for which
li —jl>m are zero. For m=1, the band width of the previously mentioned matrix is 3.

1.5 STANDARD BEAM ELEMENT

A beam element is one of the basic elements to be used in the structural analysis of
planar orthogonal frames. There are some sign conventions that need to be followed
before deriving the stiffness matrix of the beam element. The anticlockwise end
moment, joint rotation and joint moments are taken as positive; the upward force or
displacement of the joint is positive; the force toward the right or axial displacement
toward the right of the joint is positive; the upward end shear at the ends of the beam
is positive; the right direction force at the ends of the beam is positive. Let us limit
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ﬁ@ [i] ®E
5 1o 2
L:

FIGURE 1.5 Standard beam element.

the discussion to planar orthogonal structures, which have either horizontal or verti-
cal members.

A fixed beam is considered as a basic model. Consider a fixed beam undergoing
deformation due to bending, neglecting the axial deformation. The standard fixed
beam is shown in Figure 1.5. The two joints of the beam element are ¢/’ and ‘k’, and
the length of the member is L,. In terms of mathematical conditions, the considered
beam element is fixed at nodes ‘j” and °k’; it has constant EI over its entire length.
The left end of the beam is designated as the jth node and the right end of the beam
is designated as the kth node. The member is designated as the ith member. (x,,, y,,)
are local axes of the member. It is very important to note the axis system. The
axis system is such that it has an origin at the jth end; x,, is directed toward the kth
end. y,, is counterclockwise 90 degrees to the x,, axis. Therefore, the (x,, y,,) plane
defines the plane of bending the beam element. This is the conventional way of
explaining the standard beam element. Let us neglect the axial deformation. For
the stiffness method, one should identify possible displacements, both translational
and rotational, at each end of the beam. So, the possible rotational and transla-
tional moments are shown in Figure 1.6. Suitable subscripts are used to denote the
rotational and translational moments. Note the order by which the moments are

marked, which allow the readers to understand the computer programs easily. The
displacements at the jth end and the kth end are (6,.5,) and (6,.9,) respectively.
All these displacements happen in the x,, y,, plane and there is no out-of-plane
bending.

Now, let us derive the stiffness coefficient, k,-j. According to classical definition, k,j
is the force in the ith degree-of-freedom by imposing unit displacement, which can

[i] 04 @ Xm
SC/IITM F
EI constant

[

L

FIGURE 1.6 Rotational and translational moments in a beam element.
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be either translational or rotational in the jth degree-of-freedom by keeping all other
degrees-of-freedom restrained. There are two degrees-of-freedom:

1. Static degree-of-freedom
2. Kinematic degree-of-freedom

Static degree-of-freedom is related to the release of actions like shear force, bend-
ing moment, axial force, and so on. It is associated with the flexibility approach.
Kinematic degree-of-freedom is related to displacements. It is associated with the
stiffness approach. The degrees-of-freedom mentioned in the definition of stiffness
are related to displacement and hence kinematic degree-of-freedom. In the previously
mentioned, there are four degrees -of-freedom (two rotations and two translations).
One should give unit displacement in each degree-of-freedom to find the forces at
the respective degrees by keeping the remaining degrees-of-freedom restrained. k;
is also defined as the moment in the ith degree-of-freedom by imposing unit rota-
tion at the jth degree-of-freedom by keeping all other degrees-of-freedom restrained.
Imposing unit displacement represents 3, =1 or 8, = 1 and unit rotation implies 0, =1
org,=1.

Let us give unit rotation at the jth end, keeping all other degrees-of-freedom
restrained, as shown in Figure 1.7. This will invoke members with end forces;
kpps kaps ki ks Kyp is the force in the pth degree-of-freedom by giving unit displace-
ment in the pth degree-of-freedom in the ith member. Similarly, k,jp is the force in
the gth degree-of-freedom by giving unit displacement in the pth degree-of-freedom
in the ith member.

The second subscript in all the notations is common; it is ‘p’. It indicates that the
unit displacement is given at the pth degree. The stiffness coefficients are generated
column-wise. Thus, the obtained stiffness coefficients correspond to the first column
of the stiffness matrix. Similarly, apply unit rotation at the end k of the member, as

shown in Figure 1.8. The stiffness coefficients in this case will be kj,,, ki, ki, kiy-
The stiffness coefficients are again obtained by applying unit displacements at the
jthend and kth end, as shown in Figures 1.9 and 1.10. By applying unit displacement

at the jth end, the stiffness coefficients are k', k.., k., k... By applying unit displace-

prs qr»
ment at the kth end, the following stiffness coefficients are obtained: k;x, k;x, kKL
A tangent can be drawn by connecting the deflected position of the beam at which

the unit rotation is applied and the initial position of the beam at the other end. From

m qp/E\ Xm

SC/IITM
EI constant .
k;p

L

FIGURE 1.7 Fixed beam element — unit rotation at jth end.
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Ym

kpq [i] o Xm

SC/IITM 0q = unit—}‘/x

¥ - Elconstant .-

i
ksq

FIGURE 1.8 Fixed beam element — unit rotation at kth end.

......................

SC/IITM
EI constant
L

EI constant
L

FIGURE 1.10 Fixed beam element — unit displacement at kth end.
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which, one can say that the beam has undergone a rotation of 1/Li, where Li is the

length of the member. The rotation at the ends of the beam is equal to 1/Li.

For the ith beam element experiencing arbitrary end displacements, namely

(9,;,5r) and (eq,&\.), corresponding end reactions (moment, shear) are required

to be estimated. They need to be estimated by maintaining the equilibrium of the

restrained member. The governing equations are as follows:

m, =k},,0, + k0, + k)8, + k),

(1.18)

It can be seen from the previous equation that the first subscript of the equation cor-
responds to the end at which the unit rotation or displacement is applied. Similarly,

ml =kl 0, +k 0, + k8, +kid,

(1.19)
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The force equations are,

pr=k0,+ki,0, +k.,5, +ki\S,

pi=ki0, +ki,0, + ki3, + ki, (1.20)
The previous equations give the end moments and end shear forces for arbitrary dis-

placements 8,.0,,8, and 8,, which are unity at respective degrees-of-freedom. These
equations can be generalized by the following equation:

(m) =[x, (5 .21

where,
mP 6P
mq eq
{mi} = N {81} = and
Pr 3,
Ds d;
kPP kPq kP’ kPS
|: k:l _ kc/r' ch/ qu kqx
i krp qu krr krs
ksp ksq ksr kss

We need to evaluate only a set of rotational coefficients in the stiffness matrix, and
the other coefficients can be easily written in terms of the same rotational coef-
ficients. These rotational coefficients are kf,p, kf,q, k;p, k;q. For example, in order to
evaluate the end shear,

ki — k;p + k(lip
p L
K, = _7’%; Kap (122)

1

The negative sign in the previous equation is due to the fact that the direction of
kﬁ,, is opposite to the end shear developed by the restraining moments as shown in
Figure 1.11. In the fixed beam element with unit rotation at the end p, the moments
developed at the ends p and ¢ to control the applied unit rotation are kﬁ,p and kg
respectively. The anticlockwise moment developed on the beam will be equal to
ky,, + ky,. This anticlockwise moment has to be counteracted by the shear, which will
be creating a clockwise couple in the beam element. The shear forces at the ends p
and ¢ are found to be the same in magnitude, which is given by M.

i

i
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ki
ap Xm

SC/UTM
ki + ki EI constant : ;.m i)

pp awp _ ki L] _ — ki

™, i , sp
L i L

FIGURE 1.11 Fixed beam element — rotation coefficients.

The upward shear is positive, and the downward shear is negative, from which the
coefficients k,, and k,, can be obtained. It can again be seen that the second subscript
in the stiffness coefficients indicates the end at which the unit rotation is applied,
and the first subscript indicates the respective forces in the degrees-of-freedom. In
the same manner, the remaining stiffness coefficients can also be expressed in term
of the rotation coefficients kﬁ,p, k;q, kf,,,, kf,q. Thus, out of sixteen coefficients in the
stiffness matrix, we need to evaluate only four coefficients.

Similarly, referring to Figure 1.8, where unit rotation is applied at the kth end, the

rotational coefficients from equation 1.22 are given subsequently:

ki — k;’q + klllq
ki - _ k;q + kllm
sq Li

By referring to Figure 1.9, where unit displacement is applied at the end j,

ki — k;’P + klﬂ‘[
pr L
K, = Lpzkﬂ (1.23)
kir — k;’f +k¢;r — k;P + klpq + k:IP + kfllq (124)

oy [y

Thus,

k:r — kllw + kllﬂl + k(llp + kfllq (125)

(L)
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Similarly,

k;lr —_ kIIJP + k;’q + klllﬁ + klllq (126)

(L)

By referring to Figure 1.10, where unit displacement is applied at the end &,

i
ps L
A ki, +k.
ki = -0 a 1.27
¢ L (1.27)
ki' - _ kj“‘ + k:i\ - _ k;’l’ + klpq + kﬂliﬂ + kﬂllll (128)
| L (L)

k;ls —_ k;P + k.;q + ktllp + klllq (129)

(L)

Form the previous equations, it can be seen that the end shear coefficients are
expressed in terms of rotational coefficients. Thus, by evaluating the four rotational
coefficients, the stiffness matrix with sixteen stiffness coefficients can be framed.
Thus, the stiffness matrix is given by

k,, +k k,, +k
k k 174 rq | Rep rq
174 P4 L ( L J
k,, +k k,, +k
kqp qu qpr L 99 _( qp L q9 )
[k]=
kPP + kai kai + k‘[‘l kPP + kP‘[ + kl[l’ + k‘i‘[ kPP + kai + kQP + qu
L L I* I’
_ kPP + kl)‘l _ kl"] + qu _ kPP + kPq + k‘IP + qu _ kPP + kl"] + k‘[P + k‘I‘I
L L I* I’ |

Flexibility and stiffness matrices are related as follows:
[D][k]=[1] (1.30)

5. &,
Let { . ]k} be the flexibility coefficients of a member with nodes j and k and
% Kk

k k
{ o P q:| be the stiffness coefficients, then

qp 99
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6/?/' 6jk kl’l’ kﬂq _ 1 0

Oy Ow || kp Ky 0o 1
Our aim is to calculate the stiffness matrix [k]. This can be evaluated in the follow-
ing way:

[K]=[D]'[1] (1.31)

Now, let us evaluate the flexibility coefficients to form the flexibility matrix. Then,
the stiffness matrix is derived from the flexibility matrix by the previous equation.

1.5.1 ESTIMATING ROTATIONAL COEFFICIENTS

Consider a simply supported beam as shown in Figure 1.12. Unit rotation is applied
at the jth end and the flexibility coefficients are determined. Similarly, flexibility
coefficients are determined by applying unit displacement at the kth end, as shown
in Figure 1.13. The flexibility coefficients (53./., ;q) define rotations at end j and k
respectively of the ith member, caused due to unit moment applied at the jth end.
Similarly, flexibility coefficients 5;.,” i, ) define rotations at jth and kth ends of the
ith member due to unit moment applied at the kth end.

Let us consider a beam fixed at the end ¢ and imposed by unit rotation at the end
p, as shown in Figure 1.14. Similarly, assume the beam fixed at end p and imposed
by unit rotation at end ¢, as shown in Figure 1.15. The stiffness coefficients (k;p,k;p)
define end moments required at jth and kth ends to maintain equilibrium when the
jth end is subjected to unit rotation, while the kth end is restrained. Similarly, the

FIGURE 1.12  Simply supported beam — unit rotation at j.

9k=1

FIGURE 1.13  Simply supported beam — unit rotation at k.
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SC/IITM
EI constant
L:

1

FIGURE 1.14 Fixed beam — unit rotation at p.

[i]

i
kpq

) L ,

FIGURE 1.15 Fixed beam — unit rotation at g.

stiffness coefficients (kf,q,kéq) define end moments required at jth and kth ends to
maintain equilibrium, when the kth end is subjected to unit rotation and the jth end

is restrained.
81‘1’ 8J'k kpp kpq _ [ 1 0} (1.32)
8kj O kqp qu 0 1

Thus,
Expanding the previous equation,

KB+ B = 1

qp =
i i il
kO + kgpOe =1

ki O + ki 0 =1

Jl
Jeh S + ki Sl =1 (1.33)

Let us denote the flexibility matrix as [D,] and stiffness matrix as [k,]. The subscript
r stands for rotational degrees-of-freedom. In order to estimate the flexibility matrix
for the beam element, assume the simply supported beam with unit moment at the
jthend, as shown in Figure 1.16. The anticlockwise moment is balanced by the clock-
wise couple created by the forces. The bending moment diagram is also shown in
Figure 1.16 with tension at the top and compression at the bottom.

Let us replace the loading diagram with a conjugate beam, as shown in Figure 1.17.
Taking the moment about A,
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DM = 1 SC/IITM i
Il// ll//
0
T
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FIGURE 1.16  Simply supported beam.
1
EI
A B
SC/IITM
S VAN

FIGURE 1.17 Conjugate beam.

V= lL,- 1 114 i: L (downward)
2 \EI)|3 |L 6FEI

1 1 L

. L.
Vy= 7Li — - L= : d
! {2 (EI J} 661~ 3 Prd)

The same procedure is followed for the other case to derive the following flexibility
matrix:

Lo L
p,—| 3B OEI
L L

C6EI  3EI
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Therefore,

k = [D] IZ(EI) E @ _ L L
L L ||oE aE
G6EI  3EI L L

Thus, from the previously mentioned four rotational coefficients, the whole stiffness
matrix can be derived.

4EI  2EI  6EI  6EI |
l i I I?
2EI 4EL G6EI_GEI
k| ! ! r r
' 6EI 6FI 12E1 12EI
N P P
6EI 6EI 12EI  12EI
22 P P

1.6 BEAM ELEMENT WITH VARYING FLEXURAL RIGIDITY

Consider a beam with varying depth, as shown in Figure 1.18. The length of the
beam is 5 m. Since the depth of the beam is varying, the flexural rigidity of the beam
will also vary, even under constant material (£ is constant). The moment of inertia
will vary.

The stiffness matrix is developed by neglecting the axial deformation. Let us
divide the beam into ten parts, as shown in Figure 1.19. A different moment of inertia
for each part is assigned. For the cross-section of the beam at the end with 400 mm
depth, the moment of inertia is given by,

3
_ 300x400° _ 1.6x10° mm*
12
_ /300mm
SC/IITM
400mmJ
600 mm
5000 mm

X

FIGURE 1.18 Beam with varying depth.
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5000 mm
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FIGURE 1.19 Beam with varying moment of inertia.

Now, the moment of inertia of each strip can be obtained by calculating the depth
of the beam at each and every strip. We also know the average thickness of all the
strips. Let h=400, then 1.5h=600. In the same way, the average thickness of all
the strips can be expressed in terms of ‘h’. The values are given in Table 1.1. Then,
the moment of inertia of all the strips can be easily found. For example, the moment
of inertia of strip 1 is given by,

I =(1.025)' 1=1.0771

Similarly, the moment of inertia of all the strips can be calculated and the values are
listed in Table 1.1.

The next step is to compute the loading diagram. Consider a simply supported
beam to which a unit moment is applied in order to derive the flexibility coefficients.
The deflected profile of the beam with flexibility coefficients is shown in Figure 1.20.

TABLE 1.1
M/EI Ordinates of Strips of the Beam-Unit Rotation at j

Average Thickness Moment of Average
Strip of Strips Inertia (/) Moment (M) M/EI Ordinates
I, 410=1.025h 1.0771 0.05 0.046/EI
I, 430=1.075h 1.2421 0.15 0.121/EI
I 450=1.125h 1.4241 0.25 0.176/EI
I 470=1.175h 1.6221 0.35 0.216/EI
Is 490=1.225h 1.8381 0.45 0.245/E1
Iy 510=1.275h 2.0731 0.55 0.265/EI
L 530=1.325h 2.3261 0.65 0.279/E1
I 550=1.375h 2.601 0.75 0.288/EI
I 570=1.425h 2.8941 0.85 0.294/EI

Iy 590=1.475h 3.2091 0.95 0.296/EI1
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M/EI diagram

FIGURE 1.20 Simply supported beam with unit rotation at j.

The unit moment can also be distributed among the ten strips. Let us identify the
moment in each strip. For example, in the 10th strip, the moment is 0.95. Similarly,
the moment at other strips can be calculated by proportioning. The values are listed
in Table 1.1. Since the moment and the flexural rigidity of the beam is completely
known for all the strips, the M/EI diagram for the conjugate beam is developed as
shown in Figure 1.20. The M/EI ordinates are also listed in Table 1.1. For example,
the M/EI ordinate is given by

MV/EI ordinate for 10th strip = 0.95/3.2091 = 0.296/ EI
The ends of the beam are marked as A and B. By taking moment A,

vp = éo—f{(0.296x0.25)+(0.294x0.75)+(0.288x 1.25)+(0.279%1.75)

+(0.265x2.25)+(0.245%2.75)+(0.216 x3.25) +(0.176 x3.75)

+(0.121x4.25) +(0.046 x 4.75)|
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0451

£l (downward)

Vp
Similarly,
Vs =${(0.296 +0.294+0.288 +0.279 +0.265+0.245+0.216 +0.176 +0.121
+0.0446)x 0.5 (0.451)}

_0.662

VA

(upward)

Thus, the flexibility matrix of the beam element is given by,

i EI-0451  ay

In order to find the second column of the flexibility matrix, the same procedure as
previously mentioned should be followed by applying a unit moment at the kth end,
as shown in Figure 1.21. The anticlockwise unit moment is applied at the kth end.
It can be seen that the second subscript in the flexibility coefficients is ‘k’, where
the unit rotation is applied. Then, divide the beam into ten strips and calculate the
average thickness of the strips. Then, the M/EI ordinate is calculated, as listed in
Table 1.2. The M/EI diagram is shown in Figure 1.21. This becomes the loading
diagram for the beam.

) k

/8t sc/IITM lere |
xé “jk

(=]

\o.os
-\ms
\o:~

—

il

A M/EI diagram R

FIGURE 1.21  Simply supported beam with unit rotation at k.
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TABLE 1.2
M/EI Ordinates of Strips of the Beam-Unit Rotation at k

Average Thickness Moment of Average
Strip of Strips Inertia (/) Moment (M) M/EI Ordinates
I, 410=1.025h 1.0771 0.05 0.016/EI
I, 430=1.075h 1.2421 0.15 0.052/EI
I 450=1.125h 1.4241 0.25 0.096/EI
1 470=1.175h 1.6221 0.35 0.150/EI
I 490=1.225h 1.8381 0.45 0.217/E1
Ig 510=1.275h 2.0731 0.55 0.293/EI1
I 530=1.325h 2.3261 0.65 0.401/EI
I 550=1.375h 2.601 0.75 0.527/EIL
I, 570=1.425h 2.8941 0.85 0.684/E1
I, 590=1.475h 3.2091 0.95 0.882/El

To find the vertical reactions, taking the moment about A,

Ve = (]); {(o 016x25)+(0.052x0.75)+(0.096 x1.25) +(0.15x1.75)

+(0.217x2.25)+(0.293x2.75) +(0.401x3.25) +(0.527x3.75)

+(0.684x4.25)+(0.882x 4.75)|

1.210
EI

Vp =

(upward)

Vg = é{(0.0lé +0.052+0.096+0.15+0.217+0.293 + 0.401 + 0.527 + 0.684

+0.82)x0.5-1.210}

45
vy =—— (downward
Therefore, the flexibility matrix is given by,
I: ] _ 0.662  —0.450
EIl-0.451 1.210
Now, the stiffness matrix is obtained by inverting the flexibility matrix.

El [1210 0450
(x].=[P] 0599{0.45 0.662}
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FIGURE 1.22  Planar orthogonal structure.

2202 0.751
[K] =EI
! 0.750 1.105
Consider a beam which is fixed at both the ends and has a varying cross-section. The
length of the beam is 5 m. The moment of inertia is already calculated as 1.6 x 10°
mm*. Then, the degrees-of-freedom of the member are marked neglecting the axial

deformation, as shown in Figure 1.22. Now, the stiffness matrix can be readily writ-
ten with the known rotational coefficients. The stiffness matrix is given by,

2.02 0.751 0.554 -0.554
0.751 1.105 0.371 -0.371
0.554 0.371 0.185  -0.185
-0.554 -0.371 -0.185 0.185

i

1.7 PLANAR ORTHOGONAL STRUCTURES

The stiffness method is more generic and easily programmable compared to that of
the flexibility method. The stiffness method is also not problem-specific. The stiff-
ness matrix of a fixed beam element can be easily developed with only the rotational
coefficients. Let us apply this method to a planar orthogonal structure. Consider a
single story single bay frame, as shown in Figure 1.22. Both the ends of the frame are
fixed, and the frame is subjected to some arbitrary loading. The height of the frame is
taken as ‘%’ and the flexural rigidity is ‘EI’. There are some basic steps to formulate
a stiffness method of analysis for solving this problem. The unknowns in stiffness
method are displacements which can be translational as well as rotational. Thus, the
stiffness method is a generic method that can be applied to any frame under arbitrary
loading, because the unknowns in the analysis are not actions but displacements.
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It is more or less a well-defined procedure. The members are numbered indexed
using square brackets, as shown in Figure 1.22. There are three members in the
frame considered for the analysis. Let the joints be numbered in a sequence using
circles. There are four joints in the frame.

For every member, it is now important to identify the joint numbering in accor-
dance to the standard fixed beam. Some literature uses the transformation matrix for
solving the problem, where the orientation of the member with respect to the origin
axis becomes important. But, we will handle this following a different method, with-
out any transformation matrix. So, the elemental member will be a fixed beam irre-
spective of the boundary conditions of the original beam considered for the analysis.

Step 1: Mark degrees-of-freedom

The elemental member should have both the ends fixed with four degrees-of-freedom
in translation and rotation by neglecting axial deformation as shown in Figure 1.23.
We will follow the same notations and order for all the problems.

Step 2: Identify unrestrained and restrained displacements at each joint

While numbering the displacements, first label the unrestrained displacements of
all the joints. Then, label restrained displacements of all the joints. This is called
grouping, which helps in cross-partitioning of the matrix. This will make the analy-
sis more simple, closed form and very easy. For example, consider a frame with
both ends fixed as shown in Figure 1.24. The frame has three members and four
joints. Joints 2 and 3 are free to rotate and displace, which means the frame can
sway. The unrestrained displacements are marked first: 6, 0, and 35, neglecting the
axial deformation. Thus, the stiffness matrix in unrestrained degrees-of-freedom is
a 3x3 matrix. Joints 1 and 4 are fixed, not allowing any rotation and displacement.
The restrained displacements are 8,, 85, 04, 07, 83 and . Thus, the total number of
degrees-of-freedom of the frame is 9. It shows that the size of the stiffness matrix
will be 9 x9. But, the stiffness matrix of the whole frame can be partitioned.

The stiffness matrix in unrestrained degrees-of-freedom is denoted by k,, and
the stiffness matrix in restrained degrees-of-freedom is denoted by k,, as shown in
Figure 1.25.

Step 3: To determine the unrestrained displacements

Let us consider the stiffness matrix in term of unrestrained and restrained stiffness
matrices. Let the unrestrained and restrained displacements be denoted as A, and A,

0. 440 [i] 92@

SC/IITM

83 84

FIGURE 1.23 Elemental fixed beam with degrees-of-freedom.
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FIGURE 1.24 Single story single bay frame.

Unrestrained Restrained
| ]
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DDOOOOD® G

[kuul3xs [kurlaxe Unrestrained

[K] frame=

[kruloxs [krrlexe Restrained
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FIGURE 1.25 Partitioning of stiffness matrix.

respectively. The product of the stiffness matrix and the displacement will give the
sum of a joint load vector and partial reaction vector, which can again be partitioned
into unrestrained and restrained load vectors and reaction vectors respectively. The
partitioned stiffness matrix, partitioned displacement vector, partitioned joint load
vector and the partitioned reaction vector are given in the following equation:

e el e

Let us expand the previous equation,

[k J{ A = {0}, (1.36)
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(A =Tk ] {00}, (1.37)

Thus, A, can be computed from the previous equation. To compute A,, we need to
know joint load vector also.

Step 4: To estimate the joint load vector {J,}

The joint load vector is derived based on the fixed end moments generated from the
applied loads on each member. The fixed end moments for different loading condi-
tions are given in Table 1.3.

[Sign convention: Anticlockwise moments are positive]

The joint load will be simply the reversal of the fixed end moments. End moments
due to displacements can also be found out as given in Table 1.4.

Thus, these are the standard formats by which one can find the end moments
either caused by the load on the beam or by the displacement on the joint or rotation
on the joint. By reversing this, joint loads can be obtained from which the unre-
strained displacements can be computed.

1.8 EXAMPLE PROBLEMS

1.8.1 ConTtiINuOUSs BEam

Analyze the continuous beam and find the reactions and end moments of the beam
shown in Figure 1.26:

SOLUTION:

1. Marking unrestrained and restrained degrees-of-freedom:
The unrestrained and restrained degrees-of-freedom are marked on the
continuous beam, as shown in Figure 1.27.

Thus, there are in total six degrees-of-freedom with two unrestrained
and four restrained degrees-of-freedom.

Unrestrained degrees-of-freedom=2 [6,, 6,]

Restrained degrees-of-freedom=4 [0;, §,, 5, O]

Thus, the unrestrained submatrix will be of size 2x2. The total size
of the stiffness matrix will be 6x 6. The element stiffness matrix will be
4x4. Let us compare the given problem with a standard fixed beam in
Figure 1.28 to obtain the labels. Even though support B is simply supported,
the basic element is a fixed beam.

Thus, the labels are

AB=[3145]
BC=[1,2,5,6]

The labels are ordered in such a manner, the rotations are followed by
translations.
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TABLE 1.3
Fixed End Moments
SI.
No. Beam M MBA
1 Fixed beam with central concentrated load: Pl Pl
i 8 8
ME g ! Mg,
AB r 1 BA
2 Fixed beam with uniformly distributed load: 2 2
wk _wb
] d 12 12
AATIIIIIIIII 3L
2 SC/I Z
A ME
M:B ; l . BA
3 Fixed beam with eccentric concentrated load: > 2
pab pba
P + 2 - 2
Mg : | Mg,
4 Fixed bean with uniformly varying load: . w2 W, P2
Wo E 20 20
Mg l y ME4
5 Fixed beam with triangular loading: 5 5
+=W,I? -=W,’
Wo 96 96

Mig ¢ ! Wy M,

6 Fixed beam with eccentric anticlockwise moment: M M
+—b(b-2a) +-—-a(2b-a)
ﬁ M \ 5 I

< 2 a / SC/IITM b

M:B [ ! | M};A
7 Fixed beam with central clockwise moment: M . M

4 4
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TABLE 1.4
End Moments Due to Displacements
Sl.
No. Beam M M
1 Beam with rotation at jth end: 4EIO 2EI0
. O T
e
S I™
M I L i Mg,
2 Beam with rotation at kth end: 2EI0 4EIO
:% : M
SC/IITM 08\ R
F
M ! Mpa
3 Simply supported beam with rotation: 3EI0, NIL
L2500
l
18, SC/IITM
“&“\
ML, Mf
4 Beam with settlement of support: 6EIA 6EIA
+ 2 + 2
Cﬁ l l
Mip L i MEa
5 Beam with settlement of support: 3EIA NIL
+ B
2 /I TR >
Mip L o Mgy
A
R
P 20 kN/m 40 kN
AT s | c
7 SC/IITM s 25m R
3m L Sm |

FIGURE 1.26 Continuous beam.
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. 20 KN/m 01 40KN 6,
v2n wayyneyyy. O W £\
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FIGURE 1.27 Degrees-of-freedom.

ep @ m eq @

SC/IITM
EI constant
o )

L

FIGURE 1.28 Standard fixed beam element.

2. Formulation of stiffness matrix:

We already know the formulation of the stiffness matrix for a standard
fixed beam element. The stiffness matrix is given by,

(4B 2BI  GEl _GEI ]
l i I I?
2EI 4EI 6EI _6EI

k| ! l 2 I?

' 6EI 6EI 12EI 12EI
N P P
6EI 6EI 12EI  12EI
2P P

Thus, the size of the stiffness matrix is 4 X4, neglecting axial deforma-
tion. For this problem, the element stiffness matrices are given by,

® 1 @ O

1333 0667 0667 —0.667|(3)
0.667 1333  0.667 —0.667 |(1
0.667 0.667  0.445 —0.445|(@)

-0.667 -0.667 —0.445  0.445|(5)

KAB :EI
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1 2 ©) ©)

080 040 024  -024 (1
040 080 024  -024 |(2
024 024 0.0%  -0.09% |(5)
-024  -0.24 -0.096  0.09 |(6)

KBC :EI

Thus, the total stiffness matrix will be written as follows:

_ |:k“”:|2><2 |:k”’:|2x4
[’q{[mm [MJ

We need only the stiffness matrix of unrestrained degrees-of-freedom.

1 2
o _p|2133 04]0
v 04 08|02
Then
| 1 [2133 04
KUU =
1.546EI| 04 08

3. Calculation of fixed end moments:
Now, the fixed end moments are calculated to find the unrestrained dis-
placements. The fixed end moments and reactions of the members are
shown in Figure 1.29.

Miy=""= = +15kNm
T 12
2 2
mhy =" 22055 kNm
12 12
y 20 kKN/m _ y 40 kN
= T T " l
7 SC/IITM Z 7 2.5m 25m
15kNm 7 15 KNm 25 KNm 7 25 KNm
4 3m * 25 2 Sm *
30IkN 30IkN 20 kN ZOIkN

FIGURE 1.29 Fixed end moments.
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V, =+30 kN
V, =430 kN
Mpe =%l= 40X _ o5 kNm
M, =—PL_ 4055 s iNm
8 8
V, =420 kN
Ve =420 kN

Thus, for the whole beam, the fixed end moments are shown in
Figure 1.30.

4. Calculation of joint load vectors:
The joint loads will be the reversal of the fixed end moments and reactions.
The joint load for the continuous beam is shown in Figure 1.31.
Now, the joint load vector is given by,

Jry
JL = I
JLR
20 KN/m 10 kNm 40 kN 25 kNm
s | c
. : SC/ITM 2.5m 2.5m
3m } Sm f
r 1
30 kN 50 kKN 20kN

FIGURE 1.30 Fixed end moments for the continuous beam.

20 kN/m 10 kKNm 40 KN 25 kNm

NI | :
2 =

ISang SC/ITM 2.5m 2.5m

3m % 5m 4

30 kKN 50 kKN 20 kN

FIGURE 1.31 Joint load vector for the continuous beam.
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-10
+25
sl
-30
=50

-20

) (=

@O®O

The unrestrained joint load vector is given by,

;o _J-0la
s 2

5. Calculation of displacements:
Now,

A=k ),

6] 1 0.8  —0.41[-10] [ -18/1.546EI
0, 1.546ET|-04 2.133||+25| |57.325/1.546EI

The vector of restrained displacements will be zero.

6. Calculation of end moment and shear:
The general equation to find the end moment of the ith beam is,

[M ] =k, +(FEM)

i

The equation can be rewritten element-wise as follows:

Mo =[k],, {8} + {FEM}

M, 1333 0667 0.667 -0.667](05] [-15 7.234
M| _ | 0667 1333 0667 -0667|0, |-15|_|-30.52
v, 10667 0667 0445 —0445|]5,[ |+30( ]22.234

Vs -0.667 -0.667 —0.445 0445 | |55 +30 37.766
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Muc =[ k], {8} +{FEM}

M, 0.8 0.4 024  —0247(6,] [25) (30517
My|_ |04 0.8 024 024 \]0,| |-25[ ] 0

Vs 024 024 009 —0.096]|]5s( |20 ]26.105
v, ~024 -024 -0.096 0.096 |5 |20 [13.895

The member end moments and shear are shown in Figure 1.32.

Check for span AB:

22.234+37.766 =20x3 = 60 kN
M, =(20%x3x1.5)+30.52-37.766(3) = 7.234 kNm

Hence, Ok.
Check for span BC:

(26.105+13.895) = 40 kN
My =(40%2.5)—(13.895x5) =30.52 kNm

Hence, Ok.

By superimposing the end moments of the members into the continu-
ous beam, the final end moments and shear are obtained, as shown in
Figure 1.33.

Check:
We can say that,

[k J{A0} =101}, = {R/}

7.234kNm 20 kN/m -30.517 kNm 30.517 kNm 40 kN 0

NI 6L | 0\
3m

] t o 1

22.234 kN 37.766 kKN 26.105 kN 13.895 kN

FIGURE 1.32 Member end moments and shear.
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723“‘1‘““ 20 KN/m 40 kN
Aﬁ‘IIII”I”IIB 1 C
7
7 i ANEEED 25m R
3m j Sm
. -
22234 KN Y J— 13.895 kKN

FIGURE 1.33 Final end moments and shear.

0.667 0

0.667 0
[ku | = EI

-0.427 024

-0.24  -0.24

1 -18
) 1.546E1 {57.325}

-15]1(3)
=40 D
-20) (6)

Thus,
M, 7.234
V. 22.234
R} = V: "1 63.81
Ve 13.895
Hence, Ok.

1.8.2 Compruter PROGRAM FOR CONTINUOUS BEAM

n = 2; % number of members

I = [1 1]; %Moment of inertis in m4
L = [3 5]; % length in m
uu = 2; % Number of unrestrained degrees of freedom

ur = 4; % Number of restrained degrees of freedom
uul = [1 2]; % global labels of unrestrained dof
url = [3 4 5 6]; % global labels of restrained dof
11 = [3 1 4 5]; % Global labels for member 1

12 = [1 2 5 6]; % Global labels for member 2
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1= [11; 127;

dof = uu+ur;

Ktotal = zeros (dof);
feml= [15 -15 30 30]; %
fem2= [25 -25 20 20]; %

39

Local Fixed end moments of member 1
Local Fixed end moments of member 2

%% Creation of joint load vector

jl= [-10; 25; -15; -30;
j1

-50; -20];

o
<

values given in kN or kNm

u = [-10; 25]; % load vector in unrestrained dof

%% rotation coefficients for each member

rcl = 4.*I./L;
rc2 = 2.*I./L;

%% stiffness matrix 4 by 4

for i = 1:n
Knew = zeros (dof);

k1 = [rcl(i); rc2(i);

(- (recl(i)+rc2(i))/L(i))]

k2 = [rc2(i); rcl(i);

(- (recl(i)+rc2(i))/L(i))]

k3 = [(rcl(i)+rc2(i))/L(i);
*2));

(2% (rcl (i) +rc2 (1)) /(L(1)
k4 = -k3;
K = [kl k2 k3 k4];

I

I

fprintf ('Member Number =');

disp (1);

(rel (i) +rec2 (1)) /L(1);

(rel (i) +rec2 (1)) /L(1);

fprintf ('Local Stiffness matrix of member,

disp (K);
for p = 1:4
for g = 1:4

Knew((1(i,p)), (1(i,q)))

end
end

Ktotal = Ktotal + Knew;

if 1 ==
Kgl=K;
else
Kg2 = K;
end
end

fprintf ('Stiffness Matrix of complete structure,

disp (Ktotal) ;
Kunr = zeros (uu) ;
for x=1:uu

for y=1:uu

Kunr (x,y)= Ktotal (x,y);

end
end

fprintf ('Unrestrained Stiffness sub-matrix,

disp (Kunr) ;

=K(p,q);

[Kuul

(axial deformation neglected)

(rel (i) +rec2 (1)) /L(1);
(-2* (rcl(i)+rc2 (1)) /(L(1)%2))]1;

[K] = \n'");

[Ktotal]l = \n');

=\n'");
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KuulInv= inv (Kunr) ;

fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');

disp (KuuInv) ;

%% Calculation of displacements

delu = Kuulnv*jlu;

fprintf ('Joint Load vector, [Jl]l = \n');

disp (§1');

fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu') ;

delr = zeros (ur,1);

del = [delu; delr];
deli= zeros (4,1);
for i = 1:n
for p = 1:4
deli(p,1) = del((1(i,p)).,1) ;

end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+feml';
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] =
\n');
disp (delbarl');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
else
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fem2';
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] =
\n');
disp (delbar2');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');
end
end
%% check
mbar = [mbarl'; mbar2'];

jf = zeros(dof,1);
for a=1:n
for b=1:4 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
end
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fprintf ('Joint forces = \n');
disp (Ff£');

MATLAB® output:
Member Number = 1
Local Stiffness matrix of member, [K] =

1.3333 0.6667 0.6667 -0.6667

0.6667 1.3333 0.6667 -0.6667

0.6667 0.6667 0.4444 -0.4444

-0.6667 -0.6667 -0.4444 0.4444
Member Number = 2

Local Stiffness matrix of member, [K] =

0.8000 0.4000 0.2400 -0.2400
0.4000 0.8000 0.2400 -0.2400
0.2400 0.2400 0.0960 -0.0960
-0.2400 -0.2400 -0.0960 0.0960

Stiffness Matrix of complete structure, [Ktotal] =

2.1333 0.4000 0.6667 0.6667 -0.4267 -0.2400
0.4000 0.8000 0 0 0.2400 -0.2400
0.6667 0 1.3333 0.6667 -0.6667 0
0.6667 0 0.6667 0.4444 -0.4444 0
-0.4267 0.2400 -0.6667 -0.4444 0.5404 -0.0960
-0.2400 -0.2400 0 0 -0.0960 0.0960

Unrestrained Stiffness sub-matrix, [Kuu] =

2.1333 0.4000
0.4000 0.8000

Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =

0.5172 -0.2586
-0.2586 1.3793

Joint Load vector, [Jl] =
-10 25 -15 -30 -50 -20
Unrestrained displacements, [DelU] =
-11.6379 37.0690

Member Number = 1
Global displacement matrix [DeltaBar] =

0 -11.6379 0 0
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Global End moment matrix [MBar] =

7.2414 -30.5172 22.2414 37.7586

Member Number = 2
Global displacement matrix [DeltaBar] =

-11.6379 37.0690 0 0
Global End moment matrix [MBar] =
30.5172 -0.0000 26.1034 13.8966

Joint forces =

0 -0.0000 7.2414 22.2414 63.8621 13.8966

1.8.3 ORTHOGONAL FRAME

Analyze the single story single bay frame shown in Figure 1.34:

1. Marking unrestrained and restrained degrees-of-freedom:

The unrestrained and restrained degrees-of-freedom are marked on the continu-

ous beam, as shown in Figure 1.35.

Thus, the size of the stiffness matrix will be 9 x9.

Unrestrained degrees-of-freedom=2 [0,, 0,]

Restrained degrees-of-freedom=7 [05, 0,, d,, &5, &, Og, O]

Thus, the unrestrained submatrix size will be 2 X 2. The total size of the stiffness
matrix will be 9x9. The element stiffness matrix will be 4 x4, neglecting axial
deformation.

6l [l
S e

50 kN
2m 1 2m
—| ——
| B SC/IITM C
] EI constant
> | 2m
> |
B 20 KN —]
> |
—» |
12 kN/m [~ 2m
mr 6m
-y
—> 30 kN —
—>
—|
—
) 2m
—>
—| A D X
A58\ Tt
4m 1

FIGURE 1.34 Frame example.
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50 kN

SC/IITM

EI constant

12 kN/m 6m

4 4m
|

FIGURE 1.35 Unrestrained and restrained degrees-of-freedom.

The orientation and the labels of the members are given in the following table:

Member  jthEnd kthEnd  Degrees-of-Freedom Labels
BA B A 1,3,9,4
BC B C 1,2,5,8
CD C D 2,6,9,7

Thus,

U _1ox1

{A}Qxlz 65 =

r

o7]
N
—
>

7x1

2. Formulation of stiffness matrix:

The stiffness matrix is given by,

43
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4EI  2EI  6EI  GEI |
! I 12 ?
2EI AEI 6EI _ 6EI

k| ! l 2 I?

' 6EI 6EI 12EI 12EI
N P P
6EI 6EI 12EI  12EI
2P P

Thus, the size of the stiffness matrix is 4 x4, neglecting axial deformation. For
this problem, the element stiffness matrices are given by,

b ® O @

[ 1333  0.667 0333 -0.333](1
0.667 1333 0333 -0333|(3)
0333 0333 o111 -0.111](9)

|-0.333  -0.333  -0.111  0.111 |

1 2 3

KABZEI

1 0.5 0375  —0.375|
Koo = EI 0.5 1 0375 -0.375|(2
0375 0375  0.188  -0.188 |(5)
|-0375 -0375 -0.188  0.188 |(8)

2 ©® O O

133 0667 0333 -0333](2
0.667 1333 0333 -0.333((6)
0333 0333 o111 -0.111](9)
-0.333  -0333  -0.111  0.111 |(7)

KCD =

We need only the stiffness matrix of unrestrained degrees-of-freedom.

1 2

2.333 0.5 |1
KUU = EI

0.5 2.333|(2
Then

» 1 [2333 -05
Kyu =
5.193EI| -0.5 2.333
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sc/uTm
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FIGURE 1.36 Fixed end moments for span AB.

3. Calculation of fixed end moments:

The fixed end moments and reactions of the members are given subsequently:

For member AB (Figure 1.36),

2 2
ME, =W 12360 30 Nm
12 12

ME, =+36 KkNm

V,=-36 kN
Vp =-36 kN
For member BC (Figure 1.37),
ME. =PL_30%% s kNm
8 8
50 kKN
25 kNm 1 25 kNm
SC/IITM
T‘ 4m
25 kN 25 kN

FIGURE 1.37 Fixed end moments for span BC.

45
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ME; =25 kNm
Vy =+25kN
Ve =+25kN

For member CD (Figure 1.38),

For 20 kN load,

F pab2 20x 2 x 42

Mep = =5 === 5 =+17.778 kNm
2 2
Mbe=PED J20X2X4 g 689 kNm
l 6
Ve =+13.333 kN
Vp =+6.667 kN
For 30 kN load,

2 2
Mé, = p?zb Z 304X _ 13,333 KNm

pa’h  30x2x4?
Mpe =55 === 5 = 26,667 kNm

Ve =+10 kN
Vp =+20 kN
17.778 KNm 13.333 KNm
== 13333 kN €= 10kN
SC/IITM
20 kKN —»
30 kKN —
SC/IITM
W<—6.667m thom
8.889 kNm 26.667 kNm

FIGURE 1.38 Fixed end moments for span BC.
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Thus, for the member CD, Fixed end moments and reactions are given by,

ME, =-17.778-13.333 =-31.111 kNm

ME. = +8.889+26.667 = +35.556 kKNm
Ve =—-13.333-10 = —23.333 kN

Vp =—6.667-20 =-26.667 kN

Thus, for the whole beam, the fixed end moments are written as follows:

=36 +25 =31.111

+36 -25 +35.556
aB={""%1 Bc={"" cp=

=36 +25 —23.333

=36 +25 —26.667

4. Calculation of joint load vectors:
The size of the joint load vector is 9 X 1.

+31
86.111

{JL}()XI = _25
—-35.556

+26.667
—25.000
+59.333

OEPRE@O®E®E

The joint load vector can be split into unrestrained and restrained degrees-of-
freedom.

(Je) v

2x1

AR
(1),

Tx1
9x1

+31 1
Thus, J;, =
86.111)(2
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5. Calculation of displacements:

Now,

{Au} = [kuu:lil {JL}u
0, 1 2333 -0.5 31 1 29.268 .
= = radians
0, 5.193E1| —0.5 2.333||86.111| 5.193EI |185.397

6. Calculation of end moment and shear:

The general equation to find the end moment of the ith beam is,

[M], = k3, +(FEM)

i

The equation can be rewritten element-wise as follows:

Map = |:k:|AB {6} + {FEM}

M, 1333 0.667 0333 -0.333](6,] [-36

M| _ | 0667 1333 0333 -0333|]6,| |+36

Vo[ 10333 0333 0111 -0.111[|8[ |-36

A —0.333 0333 -0.111 0.111 ||8,] [+36
We know that, 0, = w, 0;=9,=0,=0.

5.193E1

M, [-28.487

M 39.75
Thus, - 9759

Ve 34.123

v, —34.123

My =[ k], {5} +{FEM}

M, 1 0.5 0375 —-0.375](6, 25 48.487
My|_ | 05 1 0375  -0375|]0,( |-25( _|13.519
Vi 10375 0375 0.188  -0.188||8; 25 [ ]40.502
Ve —0375 0375 -0.188  0.188 ||& 25 9.498

Similarly, for the member CD,

Mep =[ k], {8} +{FEM]
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M, 1.333 0.667 0.333 -0.333 (|6, -31.111 16.479
M _El 0.667 1.333 0.333 —0.333| |6 . 35.556 _ 59.369
Vo 0.333 0.333 0.111  —0.111]8, —23.333 —11.444
Vi -0333 0333 -0.111 0.111 ||, —-26.667 -38.556

The member end moments and shear are shown in Figure 1.39, and the final moments
in Figure 1.40.

Check:
In member AB,

ZFH=0

(12x6)-34.123-37.877=0

ZMA:O

+28.487+(12x6%3)—(34.123x6)+39.75=0

In member BC,

Zszo

50 kN
48.487 kKNm
2m 1 2m 7549 kNm
VA oX
SC/IITM
28.487 KNm EI constant 16.479 KNm
LN 40.502 kN 5,498 1 n
B 34.123 kN 11.444 kKN
) 2m
—>|
—>|
e 20 kKN —»
— |
[, | ,
—>|
:: 30 kKN —»
—>|
—>|
S 2m
—
— 34.123 kN 38.556 kN
\ \+—
39.759 kNm 59.369 kNm

FIGURE 1.39 Member fixed end moments and shear.
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50 kKN
20 kNm 30 kNm
2m l 2m 11.444 KN

(T -
> SC/IITM
] EI constant
] 2m
|
] 20 kN —»
|
—>|

12 kKN/m [~ 2m
- 6m
—|
] 30 kN —»
—>|
—>|
—|
) 2m
él & 59.369 §¥m

39.759 kNm 34.123 kN Q:D g ! 38.556 kN
T_“é{
40.502 kKN 0.498 kN

FIGURE 1.40 Final end moments and shear.

40.502+9.798-50=0

ZMB:O

—13.159—(9.498 x4)+(50x 2)+98.489 = 0
In member CD,
ZFH = 0

20+30-11.444-38.556 =0

ZMD:O

+16.479+(11.444 x6)—(20x4) — (30 x2)+ 59.369 = 0

1.8.4 CompUTER PROGRAM FOR ORTHOGONAL FRAME

n = 3; % number of members
I = [2 1 2]; %$Moment of inertis in m4
L = [6 4 6]; % length in m

)

uu = 2; % Number of unrestrained degrees of freedom



Planar Orthogonal Structures

ur = 7; % Number of restrained degrees of freedom
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uul = [1 2]; % global labels of unrestrained dof

url = [3 4 5 6 7 8 9]; % global labels of restrained dof
11 = [1 3 9 4]; % Global labels for member 1

12 = [1 2 5 8]; % Global labels for member 2

13 = [2 6 9 7]; % Global labels for member 3

1= [11; 12; 13];
dof = uu+ur;
Ktotal = zeros (dof);

feml= [-36 36 -36 -36]; % Local Fixed end moments of member 1
fem2= [25 -25 25 25]; % Local Fixed end moments of member 2

fem3= [-31.111 35.556 -23.333 -26.667]; %
moments of member 3

%% rotation coefficients for each member
1 = 4.*I./L;
rc2 = 2.*I./L;

-
Q

Local Fixed end

%% stiffness matrix 4 by 4 (axial deformation neglected)

for i = 1:n
Knew = zeros (dof);

k1 = [rcl(i); rc2(i); (rcl(i)+rc2(i))/L(i);

(-(rcl(i)+rc2(i))/L(1))];

k2 = [rc2(i); rcl(i); (rcl(i)+rc2(i))/L(i);

(-(rcl(i)+rc2(i))/L(1))];

k3 = [(rel(i)+rc2(i))/L(i); (rcl(i)+rc2(i))/L(1);
(2% (rcl(i)+rc2 (1)) /(L(1)*2)); (-2*(rcl(i)+rc2(i))/(L(1)%2))];

k4 = -k3;

K = [kl k2 k3 k4];

fprintf ('Member Number =');
disp (1);

fprintf ('Local Stiffness matrix of member, [K] = \n');

disp (K);
for p = 1:4
for g = 1:4

Knew ((1(i,p)), (1(i,q9))) =K(p,q);

end
end
Ktotal = Ktotal + Knew;
if 1 ==
Kgl=K;
elseif i == 2
Kg2 = K;
else
Kg3=K;
end
end

fprintf ('Stiffness Matrix of complete structure,

disp (Ktotal) ;
Kunr = zeros (uu) ;
for x=1:uu

[Ktotal]

=\n');
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for y=1:uu
Kunr (x,y) = Ktotal (x,y) ;

end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu]l = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

1= [31; 86.111; -36; 36; -25; -35.556; 26.665; -25; 59.333];
¥ values given in kN or kNm

jlu = [31; 86.111]; % load vector in unrestrained dof

delu = KuuInv*jlu;

fprintf ('Joint Load vector, [Jl]l = \n');

o Ui

disp (31');

fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu') ;

delr = zeros (ur,1);

del = [delu; delr];
deli= zeros (4,1);
for i = 1:n
for p = 1:4
deli(p,1) = del((1(i,p)).,1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+feml';
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbarl') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
elseif 1 ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fem2';
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');
else
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fem3';
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
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disp (delbar3');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar3');
end
end
%% check
mbar = [mbarl'; mbar2'; mbar3'];
jf = zeros(dof,1);
for a=1:n
for b=1:4 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
end
fprintf ('Joint forces = \n');
disp (Ff£');

MATLAB output:

Member Number = 1
Local Stiffness matrix of member, [K]

1.3333 0.6667 0.3333 -0.3333

0.6667 1.3333 0.3333 -0.3333

0.3333 0.3333 0.1111 -0.1111

-0.3333 -0.3333 -0.1111 0.1111
Member Number = 2

Local Stiffness matrix of member, [K]

1.0000 0.5000 0.3750 -0.3750

0.5000 1.0000 0.3750 -0.3750

0.3750 0.3750 0.1875 -0.1875

-0.3750 -0.3750 -0.1875 0.1875
Member Number = 3

Local Stiffness matrix of member, [K] =

1.3333 0.6667 0.3333 -0.3333
0.6667 1.3333 0.3333 -0.3333
0.3333 0.3333 0.1111 -0.1111
-0.3333 -0.3333 -0.1111 0.1111

Stiffness Matrix of complete structure, [Ktotal] =

2.3333 0.5000 0.6667 -0.3333 0.3750 0 0 -0.3750 0.3333
0.5000 2.3333 0 0 0.3750 0.6667 -0.3333 -0.3750 0.3333
0.6667 0 1.3333 -0.3333 0 0 0 0 0.3333
-0.3333 0 -0.3333 0.1111 0 0 0 0 -0.1111

0.3750 0.3750 0 0 0.1875 0 0 -0.1875 0
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0 0.6667 0 0 0 1.3333 -0.3333 0 0.3333
0 -0.3333 0 0 0 -0.3333 0.1111 0 -0.1111
-0.3750 -0.3750 0 0 -0.1875 0 0 0.1875 0
0.3333 0.3333 0.3333 -0.1111 0 0.3333 -0.1111 0 0.2222
Unrestrained Stiffness sub-matrix, [Kuul] =
2.3333 0.5000
0.5000 2.3333
Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =

0.4492 -0.0963
-0.0963 0.4492

Joint Load vector, [Jl] =

31.0000 86.1110 -36.0000 36.0000 -25.0000 -35.5560 26.6650 -25.0000 59.3330

Unrestrained displacements, [DelU] =

5.6364 35.6969

Member Number = 1
Global displacement matrix [DeltaBar] =

5.6364 0 0 0

Global End moment matrix [MBar] =

-28.4848 39.7576 -34.1212 -37.8788

Member Number = 2
Global displacement matrix [DeltaBar] =

5.6364 35.6969 0 0

Global End moment matrix [MBar] =

48.4848 13.5151 40.5000 9.5000

Member Number = 3
Global displacement matrix [DeltaBar] =

35.6969 0 0 0

Global End moment matrix [MBar] =
16.4849 59.3539 -11.4340 -38.5660

Joint forces =

20.0000 30.0000 39.7576 -37.8788
40.5000 59.3539 -38.5660 9.5000

-45.5552
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1.8.5 Ster FRAME

Analyze the frame shown in Figure 1.41:

1. Marking unrestrained and restrained degrees-of-freedom:

The unrestrained and restrained degrees-of-freedom are marked on the continuous
beam as shown in Figure 1.42.

The total number of degrees-of-freedom is 13. Thus, the size of the stiffness
matrix will be 13 x 13.

Unrestrained degrees-of-freedom=7 [6,, 6,, 0;, 0,, &5, &4, ;]

Restrained degrees-of-freedom=6 [6g, 0,,, 8y, 8,0, 015, O]

20kN .
B [¢
SC/IITM 3
m
6m . D E -
A 6]
61
30 kN 3
m
101
2m
A F
T TR TN ==
4m ! 2m |

FIGURE 1.41 Frame example.

FIGURE 1.42 Unrestrained and restrained degrees-of-freedom.
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Thus, the size of the unrestrained submatrix will be 7 x 7. The total size of the
stiffness matrix will be 13x 13. The element stiffness matrix will be 4 x4, neglect-
ing axial deformation.

The orientation and the labels of the members are given in the following table:

Member  jthend kthend Degrees-of-freedom labels
BA B A 1,8,5,9
BC B C 1,2,10,6
CD C D 2,3,5,7
DE D E 3,4,6,13
EF E F 4,11,7,12
2. Formulation of stiffness matrix:
The stiffness matrix is given by,
[ 4EI  2EI 6E  6EI
[ l & r
2EI 4EI 6El _6EI
k| ! ! I r
" | 6EI  6EI 12E1 12E1
12 lZ 13 l3
6E] 6EI 12EI 12E1
_IT _172 - l3 l3

Thus, the size of the stiffness matrix is 4 X 4, neglecting axial deformation. For this
problem, the element stiffness matrices are given as follows, considering the differ-
ence in the moment of inertia of all the members in the frame.

1
2

R

-0.5

1

2
1
0.75
-0.75

KBC =EI

1
2
0.5
-0.5

2

1
2
0.75
-0.75

5

0.5
0.5
0.167
-0.167

0.75
0.75
0.375
-0.375

©)

-0.5 (1
-0.5
-0.167|(5
0.167 |(9)
6
-0.75 (1
-0.75 | (2

~0.375

0.375 | (6
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2 3 5 7
2.667 1.333 1.333 —-1.333 (2
Kep=E 1.333 2.667 1.333  -1.333 (3
1.333 1.333 0.889  —0.889 |(5
-1333 -1333 -0.889 0.889 |(7
3) (4) (6) ©
12 6 9 9|3
Koy = EI 2 9 94
9 9 9|6
9 -9 9 9|1
v @ @ @
13333  6.667 6667 —6667|(4
B 6607 13333 6667 6667 @
Kgr =EI
6.667 6.667 4445  4445((7
~6667 6667 —4445 4445 |(12)
We need only the stiffness matrix of unrestrained degrees-of-freedom.
1 2 3 4 5 6 7
4 1 0 0 0.5 075 0
1 4.667 1.333 0 1333  -0.75 -1.333
0 1.333  14.667 6 1.333 9 -1.333
Kyy =EI| 0 0 6 25.333 0 9 6.667
0.5 1.333 1.333 0 1.056 0 —0.889
-0.75 =075 9 9 0 9.375 0
| 0 -1333 -1333 6.667 —0.889 0 5.334 |

57

~N) (N () ()W) (=

The size of the unrestrained stiffness matrix is 7X 7. The inverse of the matrix is
calculated using MATLAB programming and the solution is obtained by MATLAB
code written for solving the planar orthogonal structures.

[ 02758 -0.0298 —0.0053 —0.0016
—-0.0298 0.3843 -0.0747 -0.0808
—-0.0053 -0.0747 0.2963  0.1098

Kyy =—[-0.0016 -0.0808 0.1098 0.1914

-0.107 -0.2639 -0.4029 -0.2690
0.0263 0.1776 -0.3962 —-0.2957
| —0.0246 0.1344 -0.1490 -0.2768

—-0.1070

-0.2639

—-0.4029
—-0.269
2.3068
0.6154
0.5540

0.0263
0.1776
-0.3962
-0.2957
0.6154
0.7873
0.4175

—0.0246 |
0.1344
—0.1490
-0.2768
0.5540
0.4175
0.6221 |
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3. Calculation of fixed end moments:
Since the load is acting only on the joints, the joint load vector can be written directly.
4. Calculation of joint load vectors:

The size of the joint load vector is 13 1.

0 |(1
0 [(2
0 ((3
0 [(4
20 |(5
-30((6
{JL}BXI 1 _0_ ~ _Z_
0
O
0
)
0 |@
NI

The joint load vector can be split into unrestrained and restrained
degrees-of-freedom.

(7).

13x1

0 |1

0 |(2

0 |(3

Ju=9 0 (4
20 [(5
-30((6

0 |7

Thus,

5. Calculation of displacements:

Now, {A,} =[ku ]_1 i }u
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0, -2.9291

0, -10.6047

0, | 3.8284

0,r=—49 3.4921 ;radians

EI

S5 27.6762

o -11.3104

5, —-1.4465

6. Calculation of end moment and shear:

The general equation to find the end moment of the ith beam is,
[M], = k3, +(FEM)

i

The equation can be rewritten element-wise as follows:

Mo =[K],, (6} + (FEM]

M, 2 1 0.5 -0.5 (e,
M 1 2 0.5 -0.5 ||6g
=EI +0
Vs 05 05 0167 -0.167 ]85
v, 05 05 -0.167 0.167 ||5s
M, 7.98
M 10.9091
Thus, =
Vs 3.1482
Ve ~3.1482
My =[k],.{8}+{FEM}
M, 2 1 075  -0.757(8, -7.98
M| 1 2 075  -0.75 || 0, _]-15.6556
Vol 71075 075 0375  -0375|5, ] =5.9089
v, -0.75 -0.75 -0375 0375 || &, 5.9089
Similarly, for the member CD, M), = [k]cn {8} + {FEM}
M, 2667 1333 1333 -1.333](0, 15.6556
My|_ | 1333 2667 1333 -1333|0;| | 348998
Vo[ 11333 1333 0889 —0.889 |3; ] 16.8518

Vi -1333 -1333 -0.889 0.889 ||9; -16.8518
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My =[K],,, {8} + (FEM)

M, 12 6 9 9|6 —34.8998

M, 6 12 9 -91|6, -36.9180
=FEI +0=

Vi 9 9 9 91| —35.9089

Vis -9 -9 -9 9 (|85 35.9089

M = l:k:|EF {8} + {FEM}

M, 13.333 6.667 6.667 —6.667 || 06, 36.9180

My | £l 6.667 13.333 6.667 —6.667 | |6, L0 13.6375

Vv, [T 6667 6667 4445 —4.445||8, ] 16.8518

Via -6.667 —6.667 —4.445 4445 ||9), -16.8518

The member and final end moments and shear are shown in Figures 1.43 and 1.44.
-7.98 KNm -15.656 kNm
12—
T sc/im™ 4m 15.656 KNm
-S:909 kN 5.909 kKN {Uﬁs 2N
7.98 kNm
{\—b 3.148 kN
-36.918 KNm
6m| -34.899 2m 36.918 kNm .
SC/IITM T Msszm
35909 kN 35.909 KN
o
13.638 kKim
10.9091@%-> 148N -16.852 KN
FIGURE 1.43 Member end moments and shear.
20kN .
T B 21 C

SC/ITM

3m

6m . D E +
31
30kN
3m
10I
10.909 KNm
[ ) 13.638 an[“
WT: 148 kN \\\f\\\ -16.852 KN
-5.909 kKN 35.909 kKN

FIGURE 1.44 Final end moments and shear.
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1.8.6 CoMPUTER PROGRAM FOR STEP FRAME

% Input

clc;

clear;

n = 5; % number of members

I = [3 2 2 6 10]; %Moment of inertis in m4

L =1[64323]; % length in m

uu = 7; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3 4 5 6 7]; % global labels of unrestrained dof
url = [8 9 10 11 12 13]; % global labels of restrained dof
11 = [1 8 5 9]; % Global labels for member 1

12 = [1 2 10 6]; % Global labels for member 2

13 = [2 3 5 7]; % Global labels for member 3

14 = [3 4 6 13]; % Global labels for member 4

15 = [4 11 7 12]; % Global labels for member 5

1= [11; 12; 13; 14; 15];

dof = uu+ur;

Ktotal = zeros (dof);

feml= zeros (1,4); % Local Fixed end moments of member
fem2= zeros (1,4); Local Fixed end moments of member
fem3= zeros (1,4); Local Fixed end moments of member
femd= zeros (1,4); Local Fixed end moments of member
fem5= zeros (1,4); Local Fixed end moments of member

o° o o°

Uk w N

o\°

%% rotation coefficients for each member
rcl = 4.*1./L;
rec2 = 2.*I1./L;

%% stiffness matrix 4 by 4 (axial deformation neglected)
for i = 1:n
Knew = zeros (dof);
k1 = [rcl(i); rc2(i); (rcl(i)+rc2(i))/L(1i);
(-(rcl(i)+rc2(i))/L(1))1;
k2 = [rc2(i); rcl(i); (rcl(i)+rc2(i))/L(1i);
(-(rcl(i)+rc2(i))/L(i))1;
k3 = [(recl(i)+rc2(i))/L(i); (recl(i)+rc2(i))/L(i);
(2% (rel (i) +re2(1)) /(L(1)*2)); (-2*%(rcl(i)+rc2(1))/(L(1)*2))];
k4 = -k3;
K = [kl k2 k3 k4];
fprintf ('Member Number =');
disp (1);
fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);
for p = 1:4
for g = 1:4
Knew ((1(i,p)), (1(i,q))) =K(p,q);
end
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end
Ktotal = Ktotal + Knew;
if 1 ==
Kgl=K;
elseif i
Kg2 =
elseif i
Kg3=K;
elseif i==
Kg4 = K;
else
Kg5 = K;
end

1l
1]
N

1l
[
w

end
fprintf ('Stiffness Matrix of complete structure, [Ktotal]l = \n');
disp (Ktotal) ;
Kunr = zeros(uu) ;
for x=1:uu

for y=1:uu

Kunr (x,y) = Ktotal (x,vy) ;

end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu]l = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector
jl= [0; 0; O; 0; 20; -30; 0; 0; 0; 0; 0; 0; 0]; % values given
in kN or kNm
jlu = [0; 0; 0; 0; 20; -30; 0]; % load vector in unrestrained dof
delu = Kuulnv*jlu;
fprintf ('Joint Load vector, [Jl]l = \n');
disp (§1');
fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu') ;
delr = zeros (ur,1l);
del = [delu; delr];
deli= zeros (4,1);
for i = 1:n
for p = 1:4
deli(p,1) = del((1(i,p)).,1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+feml';
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] = \n');
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disp (delbarl');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
elseif 1 ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fem2';
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');
elseif 1 ==
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fem3';
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar3');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar3');
elseif 1 ==
delbar4 = deli;
mbar4= (Kg4 * delbar4)+femd';
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar4d');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbard');
else
delbar5 = deli;
mbar5= (Kg5 * delbar5)+fem5';
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar5');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar5');
end
end
%% check
mbar = [mbarl'; mbar2'; mbar3'; mbar4'; mbar5'];
jf = zeros(dof,1);
for a=1:n
for b=1:4 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
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end
fprintf ('Joint forces = \n');
disp (Ff£');

MATLAB output:

Member Number = 1
Local Stiffness matrix of member, [K]

2.0000 1.0000 0.5000 -0.5000

1.0000 2.0000 0.5000 -0.5000

0.5000 0.5000 0.1667 -0.1667

-0.5000 -0.5000 -0.1667 0.1667
Member Number = 2

Local Stiffness matrix of member, [K] =

2.0000 1.0000 0.7500 -0.7500

1.0000 2.0000 0.7500 -0.7500

0.7500 0.7500 0.3750 -0.3750

-0.7500 -0.7500 -0.3750 0.3750
Member Number = 3

Local Stiffness matrix of member, [K] =

2.6667 1.3333 1.3333 -1.3333

1.3333 2.6667 1.3333 -1.3333

1.3333 1.3333 0.8889 -0.8889

-1.3333 -1.3333 -0.8889 0.8889
Member Number = 4

Local Stiffness matrix of member, [K] =

12 6 9 -9

6 12 9 -9

9 9 9 -9

-9 -9 -9 9
Member Number = 5

Local Stiffness matrix of member, [K] =

13.3333 6.6667 6.6667 -6.6667
6.6667 13.3333 6.6667 -6.6667
6.6667 6.6667 4.4444 -4.4444

-6.6667 -6.6667 -4 .4444 4.4444

Stiffness Matrix of complete structure, [Ktotal] =

4.0000 1.0000 0 0 0.5000 -0.7500 0 1.0000 -0.5000 0.7500 0
1.0000 4.6667 1.3333 0 1.3333 -0.7500 -1.3333 0 0 0.7500 0
0 1.3333 14.6667 6.0000 1.3333 9.0000 -1.3333 0 0 0 0
0 0 6.0000 25.3333 0 9.0000 6.6667 0 0 0 6.6667

0.5000 1.3333 1.3333 0 1.0556 0 -0.8889 0.5000 -0.1667 0 0
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-0.7500 -0.7500 9.0000 9.0000 0 9.3750 0 0 0 -0.3750 0
0-1.3333 -1.3333 6.6667 -0.8889 0 5.3333 0 0 0 6.6667
1.0000 0 0 0 0.5000 0 0 2.0000 -0.5000 0 0
-0.5000 0 0 0 -0.1667 0 0 -0.5000 0.1667 0 0
0.7500 0.7500 0 0 0 -0.3750 0 0 0 0.3750 0
0 0 0 6.6667 0 0 6.6667 0 0 0 13.3333
0 0 0 -6.6667 0 0 -4.4444 0 0 0 -6.6667
0 0 -9.0000 -9.0000 0 -9.0000 0 0 0 0 0
Columns 12 through 13
0 0
0 0
0 -9.0000
-6.6667 -9.0000
0 0
0 -9.0000
-4 .4444 0
0 0
0 0
0 0
-6.6667 0
4.4444 0
0 9.0000
Unrestrained Stiffness sub-matrix, [Kuu] =
4.0000 1.0000 0 0 0.5000 -0.7500 0
1.0000 4.6667 1.3333 0 1.3333 -0.7500 -1.3333
0 1.3333 14.6667 6.0000 1.3333 9.0000 -1.3333
0 0 6.0000 25.3333 0 9.0000 6.6667
0.5000 1.3333 1.3333 0 1.0556 0 -0.8889
-0.7500 -0.7500 9.0000 9.0000 0 9.3750 0
0 -1.3333 -1.3333 6.6667 -0.8889 0 5.3333
Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =
0.2758 -0.0298 -0.0053 -0.0016 -0.1070 0.0263 -0.0246
-0.0298 0.3843 -0.0747 -0.0808 -0.2639 0.1776 0.1344
-0.0053 -0.0747 0.2963 0.1098 -0.4029 -0.3962 -0.1490
-0.0016 -0.0808 0.1098 0.1914 -0.2690 -0.2957 -0.2768
-0.1070 -0.2639 -0.4029 -0.2690 2.3068 0.6154 0.5540
0.0263 0.1776 -0.3962 -0.2957 0.6154 0.7873 0.4175
-0.0246 0.1344 -0.1490 -0.2768 0.5540 0.4175 0.6221
Joint Load wvector, [Jl] =
0 0 0 0 20 -30 0 0 0 0 0 0 0
Unrestrained displacements, [DelU] =
-2.9291 -10.6047 3.8284 3.4921 27.6762 -11.3104 -1.4465
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Member Number = 1
Global displacement matrix [DeltaBar] =

-2.9291 0 27.6762 0

Global End moment matrix [MBar] =

7.9800 10.9091 3.1482 -3.1482
Member Number = 2
Global displacement matrix [DeltaBar] =

-2.9291 -10.6047 0 -11.3104

Global End moment matrix [MBar] =

-7.9800 -15.6556 -5.9089 5.9089

Member Number = 3
Global displacement matrix [DeltaBar] =

-10.6047 3.8284 27.6762 -1.4465

Global End moment matrix [MBar] =

15.6556 34.8998 16.8518 -16.8518

Member Number = 4
Global displacement matrix [DeltaBar] =

3.8284 3.4921 -11.3104 0

Global End moment matrix [MBar] =

-34.8998 -36.9180 -35.9089 35.9089

Member Number = 5
Global displacement matrix [DeltaBar] =

3.4921 0 -1.4465 0

Global End moment matrix [MBar] =

36.9180 13.6375 16.8518 -16.8518

Joint forces =

0.0000 -0.0000 -0.0000 -0.0000 20.0000 -30.0000 -0.0000
10.9091 -3.1482 -5.9089 13.6375 -16.8518 35.9089



Planar Non-Orthogonal
Structures

2.1 PLANAR NON-ORTHOGONAL STRUCTURE

The analysis of a simple single story single bay frame is much easier through the
stiffness method. The method becomes more complicated, when the members in the
structure are not orthogonal to each other. A typical example of such a structure is a
jacket platform, which is a template structure acted upon by wave forces. The mem-
bers in a jacket platform are always not orthogonal to each other.

Consider the conventional equation for a complete structure,

(K] {a) =) +[R], @1

The previous equation is valid only when the local axes system of the member and
reference axes system of the complete structure matches. In such a condition, the
stiffness matrix can be established in terms of submatrices by partitioning them and
solving them for displacements and moments. When the reference axes of the system
and the member axes of the system are not aligned, then the stiffness matrix of each
member may not be the same for the members not aligned with the reference axes of
the structural system. Thus, the local stiffness matrix needs to be transformed with
reference to global axes system to solve the problem. This is the difficulty in solv-
ing non-orthogonal structural systems. Thus, the complication starts only when the
members are non-orthogonal to each other. Hence, all members must be aligned or
transformed with respect to the reference axes of the system. The individual stiffness
matrices of each member should be developed in the same manner as discussed ear-
lier. But, it should be transformed within the frame of reference axes of the system.
The reference axes or global axes system and the local axis system are represented
as shown in Figure 2.1.

There has got to be a connectivity established between the local axis and the
global axis to solve a problem. The derivations discussed before, for the members
aligned to the local axis system of the member, is completely valid. But, they need
to be transformed when the local axis system is not mapped exactly to the refer-
ence axis system. If the local and reference axes system matches, there is no need
of transformation. But, it is possible only when the members are orthogonal to each
other. When the members are non-orthogonal to each other, then the mapping of the
local axes system to the reference axes system is a major issue. The transformation
has to be done on both the ways between the local axes and the global axes, which
is required for the design of the members. Thus, the procedure has to be established
for the development of the transformation matrix both ways.

67
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(i) Reference (Global) axes system (ii) Local axes system

FIGURE 2.1 Global and local axis system.
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FIGURE 2.2 Local axes system representation for a member.

The stiffness matrices developed so far, are with reference to the local axes sys-
tem. Consider a member as shown in Figure 2.2, with nodes j and k. The local axes
system of the member is represented by the x,,, y,, axes. One must choose the x,, axis
such that the length of the member lies on the positive side. Thus, it all depends on
the location of the jth end of the member. Subsequently, the kth end of the member
is located on the positive side of the x,, axis. The y,, axis is located anticlockwise or
counterclockwise by 90° to x,,. The length of the member is located on the positive
side of x,,.

The stiffness matrix derivation done so far, is valid for the local axes system. It is
very important to note that the choice of the jth end helps to orient the member local
axes to that of the reference axes.

For example, consider an orthogonal system and non-orthogonal systems, as
shown in Figure 2.3. The reference axes for both the systems are marked the same.
But, the local axes system will vary for both members. All conditions mentioned pre-
viously while choosing the jth end and local axes should be satisfied. Thus, orienting
the member with reference to the global axis will happen by choosing the jth and kth
end of each member. When the members are non-orthogonal, it can be seen that the
local axes of the members are not aligned with the reference axes of the structural
system. Thus, the members need to be transformed to the reference axes of the struc-
tural system.

In case of non-orthogonal frames, orientation of the local axes (x,-y,) may be
such that this cannot be aligned or mapped to the same orientation of the reference
axes (X-Y) (or example, members 1 and 3 in Figure 2.3). Hence, the member stiff-
ness matrix cannot be directly written with respect to the reference axes. But, there
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X

FIGURE 2.3 Global and local axes of the structural systems.

is a solution for this problem. It can be transformed to the reference axes system.
The stiffness matrix written for the local axes system will be valid. We need to
transform the same for the reference axes system. This is true when the members are
non-orthogonal. No additional efforts are required to derive or compute the stiffness
matrix in (x,,-y,) frame. The methods used earlier are all valid and only transforma-
tion has to be done. Thus, [ K i:|x,,, . needs a transformation into the reference axes

(X-Y). [ K :|X—Y cannot be written directly for non-orthogonal members.

2.2 STIFFNESS MATRIX FORMULATION

Let us now consider a beam element, which is slightly modified to be a member of
non-orthogonal frames, as shown in Figure 2.4. Here, the axial deformation is also
included. The displacements at both the ends are marked along with the local axes
system. There are six degrees-of-freedom. Now, the stiffness matrix will be of size
6x6.

We already know the submatrix in the stiffness matrix neglecting the axial defor-
mation. It is given by,

'l . 0 N G YIS

SC/IITM F_’
EI constant
8, 8
) L !

FIGURE 2.4 Beam element.
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k,, +k k,, +k

k k 174 rq _ Pp rq

Pp Pq L ( L )

k, +k k,, +k

kqp qu qp. L q9 _( qp L q99 J

[k]=
kﬂp + kpq kpq + qu kpl? + kl’q + kqp + qu kl’P + kPq + kqp + qu
L L I? I?
_ kpp + kpq _ kpq + qu _ kpp + kpq + kqp + qu _ kpp + kpq + kqp + qu
i L L r r

To develop the stiffness matrix for the non-orthogonal frame, consider the beam ele-
ment undergoing unit axial deformation, as shown in Figure 2.5.

k, is the force in the th degree by giving unit displacement in the ¢th degree.

k,, is the force in the Ath degree by giving unit displacement in the rth degree.

Here, k, = ATE S, = ATE (Since, the beam is assumed to undergo unit displacement)
AE
ki = 7 (2.2)

Similarly, assuming the beam element undergoing axial deformation on the other
end, as shown in Figure 2.6.

AE

ky =—— (2.3

l
khh = ﬁﬁu = ﬂ (24)

[ l
ke 2A= 1 E Kpe
'2 SC/IITM
A

L;

FIGURE 2.5 Beam element with axial deformation.

kep Kpe EA: 1
“ z

ﬁ SC/IITM ’

y Li

FIGURE 2.6 Beam element with axial deformation.
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Thus, the matrix involving axial deformation can be written as follows:

AE AE
N
AE  AE

o I

By combining the previously mentioned stiffness submatrix for axial deformation
with the stiffness matrix derived before, one can get the full stiffness matrix of the
non-orthogonal structural system.

Thus, the complete stiffness matrix for the member at the local axes is given by,

4EI 2EI 6EI 6EI
- T T 0 0
l l l [
2w 4B 6B 6EL
/ l / /
6EI 6EI 12E1 12E1
= a g — 0 0
/ l l l
K =
[ ]i 6EI 6EI 12EI 12EI
R
/ /

This is the complete 6 X 6 stiffness matrix of the member at the local axes. If the
local axes of the member does not orient with the global axes or the reference axes
of the system, transformation has to be done. Thus, the transformation matrix has to
be derived to transform the previously mentioned stiffness matrix to the reference
axes system.

2.3 TRANSFORMATION MATRIX

Let us consider two orthogonal sets of axes, such as (x,-y,) and (x,-y,), as shown in
Figure 2.7.

It can be seen that y, is anticlockwise 90 degrees to x,. Similarly, y, is anticlock-
wise 90 degrees to x,. Both the axes have a common origin. Let (x,-y,) be rotated
anticlockwise by 0 degrees. The horizontal and vertical components in (x,-y,) axes

are V| and V, respectively. One can resolve (x;-y,) to (x,-y,) axes. Thus,
Vi= Vlcos9+gsin6

V, =V20039—Vlsin6 2.5)
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y2

7]
SC/IITM X
> X1

FIGURE 2.7 Two orthogonal sets of axes.

The previous equations can be written in matrix form as follows:

Vi| | cos® sin© Vl
V,| |-sin® cosO v,
It can also be expressed as follows:
(v} =[r9fv) 26

Where, [T7] is the transformation matrix.
Alternatively, one can also resolve (x,-y,) to (x,-y,) axes. In this case,

Vl:Vlcose—Vz sin©

V, =V, cos0+V,sin0 2.7)

Expressing the previous equations in matrix form,
V] | cos 0 —sinb ||V
v, sin@  cosO ||V,

vi=[r] {v} 2.8)
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The transformation between the axes in both ways is valid. Thus, the transformation
matrix is given by,
c s
[T]=
-s

Where,
¢ represents cos(0)
s represents sin(0)

Here, 0 is the angle between the two axes measured in a specific style. For any
arbitrarily oriented member, local axes (x,,-y,,) should be parallel to (x,-y,), for which
reference axes will be (x;-y,). Hence, 0 is the inclination or rotation of x,, with respect
to x measured in an anticlockwise manner. We already know how to mark the local
axes for a given member that is arbitrarily oriented with respect to the reference axes.
X, should be considered in such a manner, so that the length of the member should
be on the positive side of x,, and y,, should be 90 degrees anticlockwise to x,,.

Important property of transformation matrix:
The inverse of the transformation matrix is given by,

(7T = 1 {cos@ —sin 9} 17

cos’0+sin’0|sin®  cosO

Thus, the inverse of the transformation matrix is equal to the transpose of the matrix.
Hence, the transformation matrix is orthogonal.

2.4 TRANSFORMATION MATRIX FOR END MOMENTS

Let us now consider a beam that is arbitrarily oriented with respect to the reference
axes, as shown in Figure 2.8. The member is inclined by an angle 6. The member
also undergoes axial deformation and hence the degree-of-freedom is six. Now, let

Xm (W, 85)

(H} 8n)

Ym (Vi, s)
sc/liTM

sc/ITm
(M}, 6) N X

v
(45 (%8,)

(i) Local axes system (ii) Reference (Global) axes system

FIGURE 2.8 Transformation matrix for end moments and displacements.
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us map all the degrees-of-freedom with respect to the reference axes. The mapping
of the displacements with respect to the reference axes will become parallel to the
reference axes themselves.

Thus, displacements along both local and reference (global) axes are given by,

’,7117
mﬂl
, 2
Displacements along the reference axes = v
H,
H,
mP
mq
: v,
Displacement along the local axes = v
H,
H,

The displacements on the local and reference axes are connected by the transfor-
mation matrix as follows:

m,] [1 0 0 0 0 0 |[m,
m, 0 1 0 0 0 0 m,
V. {0 0 cosH 0 sin O 0 V,
v.[ 1o o 0 cos0 0 sin@ || V,
H, 0 O —sin® 0 cos0 0 H,
H,) |0 0 0 —sin® 0 cos6 | | H,
Since,

m,=m,

m, =m,

V. =V.cos0+H,sin0

_ 2.9

V. =V,cos0+ H,sin0

H,=-V, sin0+H, cos0

H,=-V,sin®+ H, cos0

Thus, it can be said that 77; = T m;,.
Thus, the transformation matrix is written as follows:
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m; =Tm; (2.10)
m,) [1 0 0 0 0 0 |[m,
m, 0 1 0 0 0 0 m,
V. 0 0 cosH 0 —sin® 0 V.
Vi - 0 O 0 cos 0 0 —sin® || V,
H, 0 0 sin® 0 cosO 0 H,
H, 10 0 0 sin© 0 cos0 | H,

Thus, the following set of equations can be written as follows:

(6)-[77 )
(5}, =[7{5. e

where,
0, 0,
eq é‘l
3, - 3,
{8}1' = 3, ’ {6}1' = SY
3, 3,
811 Sh

It can be seen that the transformation matrix has sine and cosine values. The com-
ponent resolved along the x axis is cos 8 and the component along the y axis is sin 6.
They are denoted as C, and C, respectively. Thus, the transformation matrix can be
finally written as follows:

1 0 0 0 0 0
01 0 0 0 0
0 0 cC, 0 -C, 0
[T]=
00 0 C 0 -C
o0 ¢, 0 C 0
o o o0 ¢ 0 C|

It is interesting to note that the local axes (x,-y,) are rotated anticlockwise by 0
degrees with respect to the reference axes. Thus, 0 is measured anticlockwise, which
means that the angle is measured anticlockwise between positive x,, and X axes.
Now, this will govern the orientation of the member with respect to the reference
axes. The transformation matrix will automatically take care of the mapping.
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2.5 GLOBAL STIFFNESS MATRIX

Let us consider an arbitrarily oriented member with respect to the reference axes, as
shown in Figure 2.9: The length of the member L,. The length of the member can be
easily mapped with respect to the reference axes.

C, =cos0 :7(Xk _Xj)
L
C, =sin0= (Y'(L_Y’) 2.12)

LL.:\/(X,(—Xj)2+(1/k—1/j)2

Thus, knowing the values of C,, C, and 0, one can define the transformation matrix
of the arbitrarily oriented member with reference to the reference axes. It can be
said that, for the known orientation of (x,-y,) axes with respect to the (X-Y) axes,
the transformation matrix is completely known. Since the stiffness matrix of the
member in the local axes is already known, the stiffness matrix with respect to the
global axes can be found.

‘We know,

{m}, =[T] {m} 2.13)

{5}, =[71, 5 e

Substituting the previous equations in the following equation,

i SC/lITM ,
X; Xk

FIGURE 2.9 Transformation of length of the member.
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(7] {m} =1K1[T],{8:} 2.15)

Pre-multiplying with 7!,

() =[17"1k1[7] (3) 216

Since, [T] is an orthogonal matrix, the previous equation can be rewritten as follows:

(m)=[r] 1K1 [1] {5 e

Thus, from the previous equation, the stiffness matrix of the member with respect to
the reference axes can be written as,

K}, = [r] (k)[T], 2.18)

The previously mentioned relationship can be used to find the global stiffness
matrix of the ith member that is arbitrarily oriented with respect to the reference
axes. Now, the following equation can be written, which gives the relationship
between the component end displacements and end actions of the member in (X-Y)
axes system:

i =[%. (5} e

Further,

[KuJ{a={/.], (2.20)

2.6 IMPORTANT STEPS IN ANALYSIS OF NON-
ORTHOGONAL STRUCTURES

Step 1: Locate the local axes of the members

Choosing the jth end of the member will position the (x,,-y,,) axes of the member. The
origin of the axes (x,,-y,,) is at the jth end. The x,, axis should be oriented toward the
kth end making length of the member in the positive side of x,,-y,, axis is 90 degrees
anticlockwise to x,,. Now, this will fix the kth end.

Step 2: Locate reference axes and calculate 0
Locate the position of the reference axes (X-Y). Find 6, which is the anticlockwise
angle between (X-Y) and the (x,,-y,,) axes.
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Step 3: Compute transformation matrix coefficients of each member
Since 0 is known, find C, and C, and determine the transformation matrix [77] for
each member.

Step 4: Identify/label the degrees-of-freedom

Choose unrestrained displacements, both translational and rotational as the first
group. Then choose the restrained displacement as the second group. The important
point to be considered here is that the unrestrained and the restrained degrees-of-
freedom are chosen with respect to the reference axes and not with respect to the
local axes.

For example, consider a non-orthogonal frame, as shown in Figure 2.10. The
reference axes is also marked for the frame. The degrees-of-freedom are marked
with respect to the reference axes. There are nine unrestrained and six unrestrained
degrees-of-freedom. The unrestrained degrees should be grouped first, followed by
the restrained degrees. It can also be seen that the displacements, in all restrained
and unrestrained degrees-of-freedom, are all oriented with respect to the reference
axes (X-Y), but not with respect to the local axes.

Step 5: Estimate the stiffness matrix

The stiffness matrix, including the axial deformation, will be of size 6 X 6. Then, find
the global stiffness matrix for every member. Finally, assemble the stiffness matrix
for the complete structure and get the submatrix of unrestrained degrees-of-freedom
from the total stiffness matrix.

Step 6: Calculation of fixed end moments and joint loads
Joint loads should be computed with respect to the reference axes only. Joint loads
are the reversal of the sign of fixed end moments (FEM). Thus,

@6@ @ Ll @V\/\\\\\\‘ X
I |

®

FIGURE 2.10 Marking degrees-of-freedom.
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[FEM] =[T]/[FEM], .21

Consider a beam arbitrarily oriented, as shown in Figure 2.11. The degrees-of-free-
dom of the member are marked in both the local and global axes systems.
Now, the fixed end moments in the local and global axes are written as follows:

M, M,
M’I Mq
v, . v,

{FEM]} = , {FEM}=1{ "
Vi Vi
H, H,
Hh Hh

Therefore, the fixed end moment of global axes is a transformed value of the fixed
end moment of local axes. Then, the joint load vector is obtained by reversing the
sign of the global fixed end moment of every member. Finally, the joint load vector
for the complete structure is obtained. Now, the joint load vector for the unrestrained
degree can be obtained from the global joint load vector.

Step 7: Calculation of end moments and end shear
Then, calculate the unrestrained displacements by using the following equation:

{8} =[Ku] {72}, 2.22)

(Hn)

SC/IITM

X

(i) Local axes system (ii) Reference (Global) axes system

FIGURE 2.11 Degrees-of-freedom of beam in local and global axes system.
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The end moments and shear of every member are obtained by the following equations:
(M), =[K], (8.} +{FEM},

{1}, =[ K], {3} +{FEMm},

(2.23)

Example problems with computer program

EXAMPLE 2.1:

Analyze the planar non-orthogonal structure shown in Figure 2.12 using the stiff-
ness method. Given, /=0.0016 m*, A=0.120 m? and E is constant.

SOLUTION:

Initially, mark the local and global axes for the structure.
For the member AB, 8=tan~"(4/2)=63.435°.
For the member BC, 6=0°.

1. Calculation of transformation matrix coefficients and global labels:

The unrestrained and restrained degrees-of-freedom are marked in the
structure, similar to that of the orthogonal structure. The local axes sys-
tem for the members and the global axes system are also marked, as
shown in Figure 2.13.

Unrestrained degrees-of-freedom: 3 (6,, 8,, 8)

Restrained degrees-of-freedom: 6 (8,, 85, §,, 6,, 85, &)

EALILRARNY
>l
1

SC/IITM ¢
EI constant
4m
_______________________________________________________________ X
4m J‘
>

FIGURE 2.12 Non-orthogonal structure example.
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YITI

BI ’ = 4 2\-#66
05

83 SC/IITM 0.7C
v EI constant
8,

4m

i 4m

—
&

FIGURE 2.13 Degrees-of-freedom in local and global axes system.

Thus, the size of the total stiffness matrix will be 9x9, in which the sub-
matrix for the unrestrained degrees-of-freedom will be of size 3 x3.

Member Ends

Number  j k  Length (m) 6 (Degrees) C, (o8 Global Labels
1 A B 4.472 +63.435 0.447  0.894 (7,1,9,2,8,3)

2 B C 4 0 1 0 (1,4,2,5,3,6)

2. Calculation of the local stiffness matrix:

The stiffness matrix for the standard beam element including the axial
deformation is given by,

4F| 2FI 6E! 6E/ i
- - — - 0 0
/ / ? I?
2F/ 4FI 6El 6El
= - - - 0 0
/ / ? /2
6E! 6El 12E1 12E1
7 £ s 0 0
K] =
(K] 6E! 6E! 1261 12El
R
0 0 0 0 AE_AE
/ /
0 0 0 0 —¥ A/E
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[ 0.0014
0.0007

0.0005
[K]AB =k -0.0005

[ 0.0016
0.0008
(K], - 0.0006
BC —0.0006

0.0007

0.0014

0.0005
—-0.0005

0.0008

0.0016

0.0006
—-0.0006
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©) 2
0.0005  -0.0005
0.0005  -0.0005
0.0002  -0.0002
—-0.0002  0.0002

0 0
0 0
- ®

0.0006  —-0.0006
0.0006  —0.0006
0.0003  -0.0003

-0.0003  -0.0003

0 0
0 0

3. Calculation of transformation matrix:

The transformation matrix for any member ‘i’ is given by,

[(Tlas =

SO O O O O =

0.0268
-0.0268

0.0300
—0.0300

1.0 0 0 0 0
o1 0 0 0 0
0 0 G 0 -C, 0
(7=
0 0 0 C 0 -
0o 0 G 0 G O
o 0o 0o ¢ 0 G
0 0 0 0
1 0 0 0
0 0.4472 0 ~0.8944
0 0 0.4472 0
0 0.0944 0 0.4472
0 0 0.8944 0
(1 0 0o 0 0 O]
0 1 0 0 0 O
0 0 1 0 0 O
M=l 0 0 1 0 o
0 0 0 0 1 0
0 0 0 0 0 1|

o O O

0

w

o O O

0

o O O

w@m@—n@

-0.0268

0.0268 |

~0.0300
0.0300 |

@OOE®E
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4. Estimation of the joint load vector:

The structure does not have any member loading. There is a load acting
only on the joint. Hence, fixed end moments will not be generated in the
members. Thus, the joint load vector can be written directly as follows:

+
o

©EOOOEVW®E

—_
-
—
Il

S O O O O O = O O

9x1

Thus, the joint load vector in unrestrained degrees-of-freedom is given by,

0 1
{TLU}: 0 2
+10 2 3

5. Calculation of the global stiffness matrix:

The stiffness matrix of every member, with respect to the global axes
system, is obtained by the following equation:

(K}, [y wi17)

14 7 2 ) -4 4 1@
7 14 2 -2 -4 4 (1
_ W2 2 215 215 106 -106((9)
Kas = Ex10
-2 -2 -215 215 -106 106 |(2
-4 -4 106 -106 55 -55 |(8)
|4 4 106 106 55 55 |(3
D®w 26 6 6
16 8 6 -6 0 0 101
8 16 6 -6 0 0o |@®
R —Exiot|® 6 3 30 0 |2
-6 -6 -3 3 0 0o |
0O 0 0 0 300 -300|(3
O,

0 0 0 0 -300 300 |
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These matrices are then assembled to get the total stiffness matrix, which

will be a 9x9 matrix with submatrices of unrestrained and restrained
degrees-of-freedom.

D@ e 60 e 0 e O

(38 4 4 8 -6 0 7 -4 2 10
4 218 106 6 -3 0 -2 -106 -215|(2
4 106 355, 0 0 -300 4 55 -106|(3
8 6 0 .16 6 0 0 0 o |(®
Kroma =Ex107*[=6 -3 0 -6 3 0 0 0 o B
0O 0 3000 0 O 30 0 0 o [(®
7 =2 4 0 0 0 14 4 2 |@
-4 106 55, 0 0 0O -4 55 106
2 215 -1060 0 0 0 2 106 21509
1) 2 @3

30 4 4 101
[EUUJ:EHO"‘ 4 218 10602
4 106 355|(3

1 330.863 —4.561 —2.631

— -1

[KUU] =—| -4.561 53.769 —16.055
-2.631 -16.055  32.980

Now, {3,} =[Ku ] {1}

1 -26.307
{Su}zf ~160.545
E
329.804
0 -26.307
-26.307 0
_ 1 0 _ 1 -160.545
5| =— 8] ==
[ ]AB E |-160.545 [ ]Bc E 0
0 329.804
329.804 0

6. Calculation of end moments and shear:

(M), =[K], {3} {FEm),
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M, 0.1572

M, 0.1384

WJ _ \Zg _]-0.0639
A8V, 0.0639
Hs -0.1059

H, 0.1059

M, -0.1384

M, -0.1174

WJ _ ‘ZZ _]-0.0639
BC | Vs 0.0639
Hs 9.8941

He -9.8941

The member and final and moments are shown in Figures 2.14 and 2.15.

-0.1384 kN; 9.8941 kN -0.1174 kNi -9.8941 kN

4m
T SC/IITM T

-0.0639 kN 0.0639 kN

0.1059kN

0.1572 kNm -0.1059 kN

-0.0639 kN

FIGURE 2.14 Member end moments and shear.
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-0.1174 kN -9.8941 kN
10 KN —
SC/IITM
: EI constant
4m
0.1572 kNm 000SORN X
2m j 4m N
™ 1

-0.0639 kN

FIGURE 2.15 Final end moments and shear.

MATLAB® program:

°

n = 2; % number of members

I = [0.0016 0.0016]; %Moment of inertis in m4

L = [4.472 4]; % length in m

A = [0.12 0.12]; % Area in m2

theta= [63.435 0]; % angle in degrees

uu = 3; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3]; % global labels of unrestrained dof

url = [4 5 6 7 8 9]; % global labels of restrained dof
11 = [7 1 9 2 8 3]; % Global labels for member 1

12 = [1 4 2 5 3 6]; % Global labels for member 2

= [11; 12];
dof = uu + ur; % Degrees of freedom
Ktotal = zeros (dof);
Ttl = zeros (6); % Transformation matrix for member 1
Tt2 = zeros (6); % Transformation matrix for member 2
Tt3 = zeros (6); % Transformation matrix for member 3

feml= [0; 0; 0; 0; 0; 0]; % Local Fixed end moments of member 1
fem2= [0; 0; 0; 0; 0; 0]; % Local Fixed end moments of member 2

%% rotation coefficients for each member
rcl = 4.*%I./L;
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rc2 = 2.*I./L;
rc3 = A./L;

cx = cosd(theta) ;
sind (theta) ;

Q
&
[

%% stiffness matrix 6 by 6
for i = 1:n
Knew = zeros (dof);
kl = [rcl(i); rc2(i); (rcl(i)+rc2(i))/L(i);
(- (rcl(i)+rc2(i))/L(i)); 0; 0l;
k2 = [rc2(i); rcl(i); (rcl(i)+rc2(i))/L(i);
(-(rcl(i)+rc2(i))/L(i)); 0; 0;1;
k3 = [(rel(i)+rc2(i))/L(i); (rcl(i)+rc2(i))/L(1);
(2% (rcl (i) +rc2 (1)) /(L(1)*2)); (-2*(rcl(i)+rc2(i))/(L(1i)"*2));
0; 0;1;
k4 -k3;
k5 = [0; 0; 0; 0; rc3(i); -rec3(i)];
k6 = [0; 0; 0; 0; -rc3(i); rc3(i)]
K = [kl k2 k3 k4 k5 ké6];
fprintf ('Member Number =');

1

disp (1);

fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);

TL = [1; 0; O0; 0; 0; 0O];

T2 = [0; 1; 0; O; 0; 0];

T3 = [0; 0; cx(i); 0; cy(di); 0];

T4 = [0; 0; 0; cx(i); 0; cy(d)1;

T5 = [0; 0; -cy(i); 0; cx(i); 0];

T6 = [0; 0; 0; -cy(i); 0; cx(1)];
T = [T1 T2 T3 T4 T5 T6];

fprintf ('Tranformation matrix of member, [T] = \n');
disp (T);

Ttr = T';

fprintf ('Tranformation matrix Transpose, [T] = \n');
disp (Ttr);

Kg = Ttr*K*T;
fprintf ('Global Matrix, [K global]l = \n');
disp (Kg);
for p = 1:6
for g = 1:6
Knew ((1(i,p)), (1(i,9))) =Kg(p,q);

end
end
Ktotal = Ktotal + Knew;
if 1 ==

Ttl= T;

Kgl=Kg;

fembarl= Ttl'*feml;
elseif i ==

Tt2 = T;

87
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Kg2 = Kg;
fembar2= Tt2'*fem2;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] = \n');
disp (Ktotal) ;
Kunr = zeros(3);
for x=1:uu
for y=1:uu
Kunr (x,y) = Ktotal (x,vy) ;
end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu]l = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

jl= [0; 0; 10; O; 0; 0; 0; 0O; 0]; % values given in kN or kNm
jlu = [0; 0; 10]; % load vector in unrestrained dof

delu = Kuulnv*jlu;

fprintf ('Joint Load vector, [Jl]l = \n');

disp (§1');

fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu');

delr = zeros (ur,1);

del = zeros (dof,1);
del = [delu; delr];
deli= zeros (6,1);
for i = 1:n
for p = 1:6
deli(p,1) = del((1(i,p)).,1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+fembarl;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbarl') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
elseif i ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
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end

%% check

mbar = [mbarl';

disp (delbar2') ;
('Global End moment matrix [MBar] = \n');
disp (mbar2');

fprintf

jf = zeros(dof,1);

for a=1:n

for b=

end
end

mbar2'] ;

1:6 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;

fprintf ('Joint forces = \n');

disp (Ff£');

MATLAB output:

Member Number = 1

Local Stiffness matrix of member,

0.0014
0.0007
0.0005
-0.0005
0

0

Tranformation matrix

1.0000
0

o O O o

Tranformation matrix

1.0000
0

o O O O

0.0007
0.0014
0.0005
-0.0005
0

0

0
1.0000

o O O o

0
1.0000

o O o

[K] =
0.0005 -0.0005 0
0.0005 -0.0005 0
0.0002 -0.0002 0
-0.0002 0.0002 0
0 0 0.0268
0 0 -0.0268
of member, [T] =
0 0 0
0 0 0
0.4472 0 -0.8944
0 0.4472 0 -0
0.8944 0 0.4472
0 0.8944 0 0
Transpose, [T] =
0 0 0
0 0 0
0.4472 0 0.8944
0 0.4472 0 0
-0.8944 0 0.4472
0 -0.8944 0 0

o O O

o

-0.0268
0.0268

.8944

L4472

.8944

L4472

89
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Global Matrix, [K global] =

0.0014 0.0007 0.0002 -0.0002 -0.0004 0.0004
0.0007 0.0014 0.0002 -0.0002 -0.0004 0.0004
0.0002 0.0002 0.0215 -0.0215 0.0106 -0.0106
-0.0002 -0.0002 -0.0215 0.0215 -0.0106 0.0106
-0.0004 -0.0004 0.0106 -0.0106 0.0055 -0.0055
0.0004 0.0004 -0.0106 0.0106 -0.0055 0.0055

Member Number = 2
Local Stiffness matrix of member, [K] =

0.0016 0.0008 0.0006 -0.0006 0 0
0.0008 0.0016 0.0006 -0.0006 0 0
0.0006 0.0006 0.0003 -0.0003 0 0
-0.0006 -0.0006 -0.0003 0.0003 0 0
0 0 0 0 0.0300 -0.0300
0 0 0 0 -0.0300 0.0300
Tranformation matrix of member, [T] =
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Tranformation matrix Transpose, [T] =
1 0 0 0 O 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Global Matrix, [K global] =
0.0016 0.0008 0.0006 -0.0006 0 0
0.0008 0.0016 0.0006 -0.0006 0 0
0.0006 0.0006 0.0003 -0.0003 0 0
-0.0006 -0.0006 -0.0003 0.0003 0 0
0 0 0 0 0.0300 -0.0300

0 0 0 0 -0.0300 0.0300
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Stiffness Matrix of complete structure, [Ktotal] =

0.0030 0.0004 0.0004 0.0008 -0.0006 0 0.0007 -0.0004
0.0004 0.0218 0.0106 0.0006 -0.0003 0 -0.0002 -0.0106
0.0004 0.0106 0.0355 0 0 -0.0300 0.0004 -0.0055
0.0008 0.0006 0 0.0016 -0.0006 0 0 0
-0.0006 -0.0003 0 -0.0006 0.0003 0 0 0
0 0 -0.0300 0 0 0.0300 0 0
0.0007 -0.0002 0.0004 0 0 0 0.0014 -0.0004
-0.0004 -0.0106 -0.0055 0 0 0 -0.0004 0.0055
0.0002 -0.0215 -0.0106 0 0 0 0.0002 0.0106

Unrestrained Stiffness sub-matrix, [Kuu] =

0.0030 0.0004 0.0004
0.0004 0.0218 0.0106
0.0004 0.0106 0.0355

91

0.0002
-0.0215
-0.0106

0.0002
0.0106
0.0215

Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =

330.8628 -4.5612 -2.6307
-4.5612 53.7692 -16.0545
-2.6307 -16.0545 32.9804

Joint Load vector, [Jl] =

0o o0 10 0o o o0 o0 o0 o

Unrestrained displacements, [DelU] =

-26.3069 -160.5452 329.8036

Member Number = 1
Global displacement matrix [DeltaBar] =

0 -26.3069 0 -160.5452 0 329.8036

Global End moment matrix [MBar] =

0.1572 0.1384 -0.0639 0.0639 -0.1059 0.1059

Member Number = 2
Global displacement matrix [DeltaBar] =

-26.3069 0 -160.5452 0 329.8036 O
Global End moment matrix [MBar] =
-0.1384 -0.1174 -0.0639 0.0639 9.8941 -9.8941

Joint forces =

0 0.0000 10.0000 -0.1174 0.0639 -9.8941 0.1572 -0.1059

-0.0639
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EXAMPLE 2.2:

Advanced Structural Analysis with MATLAB®

Analyze the planar non-orthogonal structure shown in Figure 2.16 using the stiff-
ness method.

SoLUTION:

1. Calculation of transformation matrix coefficients and global labels:

The unrestrained and restrained degrees-of-freedom are marked in the
structure, similar to that of the orthogonal structure. The local axes sys-
tem for the members and the global axes system are also marked, as
shown in Figure 2.17.
Unrestrained degrees-of-freedom: 6 (0,, 8, 8,, 8,, 55, 5;)
Restrained degrees-of-freedom: 6 (0,, 85, 8y, 6,4, 811, 8,)
Thus, the size of the total stiffness matrix will be 12x12, in which
the submatrix for the unrestrained degrees-of-freedom will be of size

6X6

Member Lds Length 0 Global
Number )i k (m) (Degrees) C, G, Labels
1 A B 4 90 0 1 (7,1,9,4,8,3)
2 B C 6 0 1 0 (1,2,4,6,3,5)
3 C D 4.472 -63.435 0.447 -0.894 (2,10,6,12,5,11)
100 kKN
SOKN B

I =228 x10°mm*
A =1.35X 10°mm?

FIGURE 2.16 Non-orthogonal structure example.

I =3.125 x 10°mm*
A =15 X 105mm?

SC/IITM
E constant

6m

I=228% 10°mm*
A =135 x 105mm?

4m
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Ym

50 kN Xm

I~

6 v 83 SC/IITM
&,

E constant

Xm

Ym A§ '88
03

Is,

6m

X

FIGURE 2.17 Degrees-of-freedom, local and global axes system.

2. Calculation of the local stiffness matrix:

The stiffness matrix for the standard beam element including the axial
deformation is given by,

[ 4F1 2F| 6F1 6F1 i
- = = 0 0
/ / I? I?
2F] 4F1 6E! 6E!
= = — = 0 0
I / I? I?
6Ll 6F! 12E1 12E1
N rr 0 0
K| =
(K], 6F! 6E! 1261 121
T P 0 0
0 0 0 0 AL _AE
I I
0 0 0 0 _AE AL
L / I
S OMONC 3
(23 11 9 -9 0 o 1D
1M1 23 9 -9 0 0 |(
9 9 4 -4 0 0
[K],, =Ex107* ©
9 -9 -4 4 0 0 |(4
0O 0 0 0 338 -338/(8
|0 0 0 0 -338 3383




Advanced Structural Analysis with MATLAB®

94

10
21

21

10

=250 (3
250

250
-250

0

K], =Ex10°

10
20

20
10

3. Calculation of transformation matrix:

The transformation matrix for any member ‘i’ is given by,

0

1

[Tlac
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1.0 0 0 0 0
0 1 0 0 0 0
0 0 04472 0 08944 0
(Tlep =
0 0 0 04472 0 0.8944
0 0 -0.8944 0 04472 0
0 0 0 0.8944 0 0.4472]

4. Estimation of the joint load vector:

The structure does not have any member loading. There is a load acting
only on the joint. Hence, fixed end moments will not be generated in the
members. Thus, the joint load vector can be written directly as follows:

0 i
0 2
50 | (3
0 4
0 5

ne 1000 C%
0
0
0
o | @
0 12xl@

Thus, the joint load vector in unrestrained degrees-of-freedom is
given by,

) - 50

-100

6x1
5. Calculation of the global stiffness matrix:

The stiffness matrix of every member, with respect to the global axes
system, is obtained by the following equation:

{K}, =[] k[T,
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11

23

[23

11

0

-338
338

338
-338

0

KAB :E><1074

10
21

21

10

-250 (3

250
-250

250

0

V©E®E
) O 1
o o
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1 2
[44 10
10 41
[IZUUJ:EMO"‘
5 5
-5 -2
[ 264 —-46.9
~46.9 271
[/2 T:l -161.7 -126.7
“ E| -3.7 -3.8
-155.4 -130.5
| 71 -62.6

-986

_ 1 0 _
[SJAB:E 25 [’ |:6:|BC_

0
2882.9

3 4 5 6
9 5 0 -5 11
0 5 6 -2 |2
254 0 -250 0 |(3
0 339 0 -2 |(4
-250 0 313 -1201(5
0 -2 -120 244 |(6
-161.7 =37 -1554  —71]
-126.7 -3.8 -130.5 -62.6
1376.3 7.8 13543 659.3
7.8 29.6 7.8 3.9
13543 7.8 1372.1 668.1
659.3 3.9 668.1  366.5 |
-986
-75.8
1128829
E|l 25
898.5
-3682.2
-986 -75.8
-75.8 0
1) 25 / [S] _1)-36822
F|-3682.2 a 0
2882.9 898.5
898.5 0

6. Calculation of end moments and shear:

M), =[K] {3} + {Fem),

(M), =

M, 1.3408
M, 0.2167
Ve 0.0858
v, [~ ]-0.0858
Hs -0.3894
H,y 0.3894
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OATRNTY gogropn  OTI4RNMYTY 96106 kN

6m T o
SC/ITM -0.7314 kKNm
0.2167 KNm 0.0838 kN 00858 KN /Cﬂ 49.6106 kKN
> 03894 kN
~0.0858 KN OOINN
4m

-0.6541 KNm YD)

1.3408 kva \

A L-_> -0.3894 kN

-49.6106 kN

99.9142 kN
0.0858 kN

FIGURE 2.18 Member end moments and shear.

S0kN B 1

SC/IITM

E constant

4m

13408 kN‘f) -0.3894 kKN

P y
(((*!!{' 6m om ~49.6106 kN

0.0858 kN

99.9142 kN

FIGURE 2.19 Final end moments and shear.
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M, -0.2167

M, 0.7314

WJ _ \? _) 0.0858
BC |V -0.0858
H; 49.6106

Hs -49.6106

M, -0.7314

Mo —0.6541

["7’] _J Ve | _]-99.9142
|V, 99.9142
Hs 49.6106

Hi -49.6106

The member and final and moments are shown in Figures 2.18 and 2.19.

MATLAB program

%% stiffness matrix method
% Input
clc;
clear;
n = 3; % number of members
I = [0.00228 0.003125 0.00228]; %Moment of inertis in m4
L = 1[4 6 4.472]; % length inm
A = [0.135 0.15 0.135]; % Area in m2
theta= [90 0 -63.435]; % angle in degrees
uu = 6; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom
uul = [1 2 3 4 5 6]; % global labels of unrestrained dof
url = [7 8 9 10 11 12]; % global labels of restrained dof
11 = [7 1 9 4 8 3]; % Global labels for member 1
12 = [1 2 4 6 3 5]; % Global labels for member 2
13 = [2 10 6 12 5 11]; % Global labels for member 3
1= [11; 12; 13];
dof = uu + ur; % Degrees of freedom
(

Ktotal = zeros (dof);

Ttl = zeros (6); % Transformation matrix for member 1
Tt2 = zeros (6); % Transformation matrix for member 2
Tt3 = zeros (6); % Transformation matrix for member 3

99

feml= [0; 0; 0; 0; 0; 0]; % Local Fixed end moments of member 1
fem2= [0; 0; 0; 0; 0; 0]; % Local Fixed end moments of member 2
fem3= [0; O0; 0; 0; 0; 0]; % Local Fixed end moments of member 3
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%% rotation coefficients for each member
rcl = 4.*I./L;

rc2 = 2.*%I./L;

rc3 = A./L;

cosd (theta) ;

sind (theta) ;

QN
R
Inn

%% stiffness matrix 6 by 6
for i = 1:n
Knew = zeros (dof);
k1 = [rcl(i); rc2(i); (rcl(i)+rc2(i))/L(i);
(- (rcl(i)+rc2(i))/L(i)); 0; 01;
k2 = [rc2(i); rcl(i); (rcl(i)+rc2(i))/L(i);
(-(rcl(i)+rc2(i))/L(i)); 0; 0;1;
k3 = [(rcl(i)+rc2(i))/L(i); (rcl(i)+rc2(i))/L(1);
(2% (rcl(i)+rc2 (1)) /(L(1)*2)); (-2*(rcl(i)+rc2(i))/(L(1i)"*2));
0; 0;1;
k4 -k3;
k5 = [0; 0; 0; O0; re3(i); -rc3(i)]l;
k6 = [0; 0; 0; 0; -rc3(i); rc3(i)]
K = [kl k2 k3 k4 k5 ké6];
fprintf ('Member Number =');

1

disp (1);

fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);

T1 = [1; 0; 0; 0; 0; 0];

T2 = [0; 1; 0; 0; 0; 0];

T3 = [0; O0; cx(i); 0; cy(i); 0l;

T4 = [0; 0; 0; cx(i); 0; cy(i)];

T5 = [0; 0; -cy(i); 0; cx(i); 0];

T6 = [0; 0; 0; -cy(i); 0; cx(1)];
T = [T1 T2 T3 T4 T5 T6];

fprintf ('Tranformation matrix of member, [T] = \n');
disp (T);

Ttr = T';

fprintf ('Tranformation matrix Transpose, [T] = \n');
disp (Ttr);

Kg = TEtr*K*T;
fprintf ('Global Matrix, [K global]l = \n');
disp (Kg);
for p = 1:6
for g = 1:6
Knew ((1(i,p)), (1(i,9))) =Kg(p,q);

end
end
Ktotal = Ktotal + Knew;
if 1 ==
Ttl= T;
Kgl=Kg;

fembarl= Ttl'*feml;
elseif 1 ==
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T2 = T;

Kg2 = Kg;

fembar2= Tt2'*fem2;
else

Tt3 = T;

Kg3=Kg;

fembar3= Tt3'*fem3;
end

end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] =
\n');
disp (Ktotal) ;
Kunr = zeros(6) ;
for x=1:uu

for y=1:uu

Kunr (x,y) = Ktotal (x,y) ;

end
end
fprintf ('Unrestrained Stiffness sub-matix, [Kuu]l = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

jl= [0; O0; 50; 0; 0; -100; O; 0; 0; 0O; 0; 0]; % values given
in kN or kNm

jlu = jl(1l:uu,l); % load vector in unrestrained dof

delu = KuuInv*jlu;

fprintf ('Joint Load vector, [Jl]l = \n');

disp (31');

fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu') ;

delr = zeros (ur,1);

del = zeros (dof,1);

del = [delu; delr];
deli= zeros (6,1);
for i = 1:n
for p = 1:6
deli(p,1) = del((1(i,p)).,1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+fembarl;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbarl') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
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elseif i ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');
else
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fembar3;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar3') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar3');
end
end

%% check
mbar = [mbarl'; mbar2'; mbar3'];
jf = zeros(dof,1);
for a=1:n
for b=1:6 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
end
fprintf ('Joint forces = \n');
disp (Ff£');

MATLAB output:

Member Number = 1
Local Stiffness matrix of member, [K] =

0.0023 0.0011 0.0009 -0.0009 0 0
0.0011 0.0023 0.0009 -0.0009 0 0
0.0009 0.0009 0.0004 -0.0004 0 0
-0.0009 -0.0009 -0.0004 0.0004 0 0

0 0 0 0 0.0338 -0.0338

0 0 0 0 -0.0338 0.0338
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Tranformation matrix of member, [T] =

1 0 0 O 0 0
o 1 0 O 0 0
o o0 o0 o0 -1 0
0O 0 0 O o -1
0O 0 1 0 0 0
0o o0 0 1 0

Tranformation matrix Transpose, [T] =

O O O O O K
O O O O K O
O B O O O O
P O O O O o
O O O K O o
O O KB O O O

Global Matrix, [K global] =

0.0023 0.0011 0 0 -0.0009 0.0009

0.0011 0.0023 0 0 -0.0009 0.0009

0 0 0.0338 -0.0338 0 0

0 0 -0.0338 0.0338 0 0

-0.0009 -0.0009 0 0 0.0004 -0.0004

0.0009 0.0009 0 0 -0.0004 0.0004
Member Number = 2

Local Stiffness matrix of member, [K] =

0.0021 0.0010 0.0005 -0.0005 0 0
0.0010 0.0021 0.0005 -0.0005 0 0
0.0005 0.0005 0.0002 -0.0002 0 0
-0.0005 -0.0005 -0.0002 0.0002 0 0
0 0 0 0 0.0250 -0.0250
0 0 0 0 -0.0250 0.0250

Tranformation matrix of member, [T] =

O O O O o ¥
o O O o~ o
o O O B O o
o O B O o o
O B O O O O
H O O O o o
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Tranformation matrix Transpose, [T] =
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Global Matrix, [K global] =
0.0021  0.0010  0.0005 -0.0005 0 0
0.0010 0.0021  0.0005 -0.0005 0 0
0.0005  0.0005  0.0002 -0.0002 0 0
-0.0005 -0.0005 -0.0002  0.0002 0 0
0 0 0 0 0.0250 -0.0250
0 0 0 0 -0.0250  0.0250
Member Number = 3
Local Stiffness matrix of member, [K] =
0.0020 0.0010 0.0007 -0.0007 0 0
0.0010 0.0020 0.0007 -0.0007 0 0
0.0007 0.0007 0.0003 -0.0003 0 0
-0.0007 -0.0007 -0.0003 0.0003 0 0
0 0 0 0 0.0302 -0.0302
0 0 0 0 -0.0302 0.0302
Tranformation matrix of member, [T] =
1.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 0.4472 0 0.8944 0
0 0 0 0.4472 0 0.8944
0 0 -0.8944 0 0.4472 0
0 0 0 -0.8944 0 0.4472
Tranformation matrix Transpose, [T] =
1.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 0.4472 0 -0.8944 0
0 0 0 0.4472 0 -0.8944
0 0 0.8944 0 0.4472 0
0 0 0 0.8944 0 0.4472
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Global Matrix, [K global] =

0.0020
0.0010
0.0003
-0.0003
0.0006
-0.0006

Stiffness
Columns 1

0.0044 0

0.0010 0.
0.0009

0.0005 0

0 0

-0.0005 -0.
0.0011
-0.0009
0

0 0

0o -0

0o -0

0.0010 0.0003
0.0020 0.0003
0.0003 0.0242
-0.0003 -0.0242
0.0006 -0.0120
-0.0006 0.0120

Matrix of complete
through 10

.0010 0.0009 0.0005
0041 0 0.0005 0

0 0.0254 0 -0.
.0005 0 0.0339
.0006 -0.0250 0 0.
0002 0 -0.0002 -0.

0 0.0009 0

0 -0.0004 0

0 0 -0.0338
.0010 0 0 0
.0006 0 0 -0.
.0003 0 0 0

Columns 11 through 12

0
-0.0006

-0.0063
0.0120
0

0

0
-0.0006
0.0063
-0.0120

Unrestrained Stiffness sub-matrix,

.0044
.0010
.0009
.0005

0
-0.0005

o O O o

0
-0.0003

0.0120
-0.0242
0

0

0
-0.0003
-0.0120
0.0242

0.0010 0.0009
0.0041 0

0 0.0254
0.0005 0
0.0006 -0.0250
-0.0002 0

-0.0003 0.0006 -0.
-0.0003 0.0006 -0.
-0.0242 -0.0120 0
0.0242 0.0120 -0.
0.0120 0.0063 -0.
-0.0120 -0.0063 0
structure, [Ktotal] =
0 -0.0005 0.0011 -0.0009
.0006 -0.0002 0 0
0250 0 0.0009 -0.0004
0 -0.0002 0 0
0313 -0.0120 0 0
0120 0.0244 0 0
0 0 0.0023 -0.0009
0 0 -0.0009 0.0004
0 0 0 0
.0006 0.0003 0 0
0063 0.0120 0 0
.0120 -0.0242 0 0
[Kuu] =
0.0005 0 -0.
0.0005 0.0006 -0.
0 -0.0250
0.0339 0 -0.
0 0.0313 -0.
-0.0002 -0.0120 0

0006
0006
.0120
0120
0063
.0063

0005
0002

0002
0120

.0244

105

.0010

.0006
.0003

.0020
.0006
.0003
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Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =

1.0e+03 *
0.2640 -0.0469 -0.1617 -0.0037 -0.1554 -0.0710
-0.0469 0.2710 -0.1267 -0.0038 -0.1305 -0.0626
-0.1617 -0.1267 1.3763 0.0078 1.3543 0.6593
-0.0037 -0.0038 0.0078 0.0296 0.0078 0.0039
-0.1554 -0.1305 1.3543 0.0078 1.3721 0.6681
-0.0710 -0.0626 0.6593 0.0039 0.6681 0.3665
Joint Load vector, [Jl] =

0 0 5 ©0 0 =-100 0 0 O 0 0 0
Unrestrained displacements, [DelU] =

1.0e+03 *

-0.9860 -0.0758 2.8829 -0.0025 0.8985 -3.6822
Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e+03 *

0 -0.9860 0 -0.0025 0 2.8829

Global End moment matrix [MBar] =

1.3408 0.2167 0.0858 -0.0858 -0.3894 0.3894
Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e+03 *

-0.9860 -0.0758 -0.0025 -3.6822 2.8829 0.8985
Global End moment matrix [MBar] =

-0.2167 0.7314 0.0858 -0.0858 49.6106 -49.6106

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e+03 *
-0.0758 0 -3.6822 0 0.8985 0

Global End moment matrix [MBar] =

-0.7314 -0.6541 -99.9142 99.9142 49.6106 -49.6106

Joint forces =

0.0000 -0.0000 50.0000 -0.0000 -0.0000
-100.0000 1.3408 -0.3894 0.0858 -0.6541 -49.6106 99.9142
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EXAMPLE 2.3:
Analyze the planar non-orthogonal structure shown in Figure 2.20 using the stiff-
ness method.

SOLUTION:
1. Calculation of transformation matrix coefficients and global labels:

The unrestrained and restrained degrees-of-freedom are marked in the
structure, similar to that of the orthogonal structure. The local axes sys-
tem for the members and the global axes system are also marked, as
shown in Figure 2.21.

Unrestrained degrees-of-freedom: 6 (0,, 8, 8, 8,, 85, 5;)

Restrained degrees-of-freedom: 6 (05, 84, 8o, 00, 8,7, 61,)

Thus, the size of the total stiffness matrix will be 12x12, in which
the submatrix for the unrestrained degrees-of-freedom will be of size

6X6.
Member Ends
Number j k  Length (m) 0 (Degrees) C, C, Global Labels
1 A B 4 90 0 1 (7,1,9.4,8,3)
B C 6 0 1 0 (1,2,4,6,3,5)
C D 5 -53.123 0.6 -0.8 (2,10,6,12,5,11)
100 kN
B 2m ‘l 4m =
Y I=3.125x 10°mm* : [
L A=15x105mm? :
—>
—>
—> SC/IITM
—>
> E constant
30 kN/m f—»
— :'
— 1=228% 10°mm*
[=> A =135 X 105mm?
—> '
— H
> |1 = 2.28 X 10°mm*
—>|A = 1.35 X 105mm?
—>
—|A \
NN e % =
1 6m 1 2m )

FIGURE 2.20 Non-orthogonal structure example.
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Ym
100 kKN
0 2m Xml 4m
83
e 12
>
> SC/IITM
>
—>
30 KN/mf—»
>
l—
L
—>
l—
xrﬂ
Y
Ym<— Me .......................................................
67

Y
&

X

FIGURE 2.21 Degrees-of-freedom marked in local and global axes system.

2. Calculation of the local stiffness matrix:
The stiffness matrix for the standard beam element, including the axial
deformation, is given by,

41 2B 6E 6El
- = == == 0 0
/ / r r
AL AEGH 6H
/ / / /
6El  6El 12l 12E1
N Y E & 0 0
K| =
K= ee et 128 12m
I r 0 0
0 0 0 o AE_AE
/ /
0 0 0 o _AE A
L / /
GBONONC 3
(23 11 9 -9 0 o 1@
1M 23 9 -9 0 o |1
9 9 4 -4 0 0
[K],, =Ex107* ©
A8 -9 9 -4 4 0 0 |(4
0O 0 0 0 338 -338[(8)
|0 0 0 0 -338 338](3
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3. Calculation of transformation matrix:

The transformation matrix for any member ‘" is given by,

0

0

1

(Tlsc
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1 0 0 0 0 0

0 1 0 0 0 0

0 0 0.6001 0 0.7999 0
[(Tleo =

0 0 0 0.6001 0 0.7999

0 0 -0.7999 0 0.6001 0

0 0 0 -0.7999 0 0.6001 |

4. Estimation of joint load vector:
The fixed end moments on the members are calculated as follows:

Member AB:
40 40
-40 -40
60 _ 0
FEMY =1 o 7 {FEM} = 0
0 -60
0 -60
Member BC:
89.89 89.89
—44.44 —44.44
FEM) - 66.67 {FEM} ] 66.67
BC 133.333(' BC |33.333
0 0
0 0

The joint load vector is given by,

-48.89
44.44
60
—66.67
0
-33.33

EOEEENEEO®®®E

12x1
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Thus, the joint load vector in unrestrained degrees-of-freedom is given by,

o} =

—48.89
44.44
60
-66.67
0
-33.33

6x1

5. Calculation of the global stiffness matrix:

The stiffness matrix of every member, with respect to the global axes

(U (A WIIN) (=

system, is obtained by the following equation:

I?AB :E><1074
Kge =Ex107*

2

(18

9

Kep =Ex107* 3
cbh — _3
4

—4

i},

@ a

11

= [T],T (K], [T]i
® @ 3
0 o -9 91@
0 0o -9 910
338 338 0 0|09
-338 338 0 0|4
0 0 4 -4|(8)
0 0 -4 4|3
4) (6 3 5
5 -5 0 0 |1
5 -5 0 0 |2
2 =2 0 0 |(4
2 2 0 0 |(6
0 0 250 -250((3
0 0 =250 250 |(5
0 © 6 O
3 -3 4 -4 72
3 -3 4 —4
174 -174  -129 129 | (6
-174 174 129 -129| (2
-129 129 99 =99 | (5
129 -129  -99 99 | ()
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N ® ® 6 ©®o0o6® 0 @ 6o @

44 10 9 5 0 511 9 0 0 0 0 10
10 39 0 5 4 2 "0 0o 0 9 -4 3|2
9 2% 0 250 0 .9 -4 0 0 0 0o |3
5 5 0 339 0 210 0 33 0 0 0o |(4
0 4 25 0 349 -129' 0 0 0 4 99 129 [(5
B Exio4 2.2 0 2 29 75, 0 0 0 3 129 -174/(6)
roiL = £ 11 0 9 0 0 0 123 9 0o 0o o o [®
9 0 -4 0 0 019 4 0 0 0 0
0 0 0 33 0 0O 0 0 338 0 0 o |@®
0 9 0 0 4 3 '0 0 0 18 -4 -3
0 -4 0 0 99 12610 0 0 -4 99 -129]@)
o =3 o 0 129 7410 0 0 3 129 174
1 2 3 4 5 6
(44 10 9 5 0 -5 701
10 39 0 5 4 -2 2
_ 49 0 254 0 -250 0 3
[Kuu]:fxm
5 5 0 339 0 2 |4
0 4 -250 0 349 -120|(5
5 2 0 -2 -129 1756

[ 258.7 -59.2 -125.5 -3.5 -118.8 -80.1]
-59.2 2772 -61.8 -3.6 649 -46.4
[k T:1 -1255 -61.8 1262.3 7.5 1239.6 904.8
““ -3.5 -3.6 7.5 29.6 7.5 5.7
-118.8 —64.9 1239.6 7.5 1256.7 917.5
| -80.1 -46.4 9048 57 9175  727.1|

-1.9906
1.3283
4.8465

-0.1702
4.6213
3.1529

0 -1.9906 1.3283
-1.9906 1.3283 0

_ 1 _ 1 ~0.1702| 1 3.1529
[SLB:EX104 ~0.1702 [E’chfﬂy 3.1529 [’ [SJCD:EX104

0 4.8465 4.6213
4.8465 4.6213 0
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6. Calculation of end moments and shear:

(A}, =[K] e} + fFm},

M, 58.745

M, —43.9479

WJ _ \Zg _) 574513
a8 | v, —57.4513
Hy -63.6993

H, -56.3007

M, 43.9479

M, -54.8100

W] Vel ) 574513
BC |V 42.5487
H; 56.3007
Hs -56.3007

M, 54.8100
Mo 42.6958
WJ Ve | _|-42.5517

o | v, 42.5517
Hs 56.3007
Hyy -56.3007

The member and final and moments are shown in Figures 2.22 and 2.23.

43.948 KNm Q 56,301 kN 0.7314 an(\ 56301 kN
> - >
SC/IITM 54,810 KNm
43.948 KNm STASLIN 2o c 56 301N
 fom -56.301 KN
-42.552 kN
-57.451 kN
4m

42696 KNm Y1)
s8.745 kx| $56.301 KN
A jm 63,699 KN
42,552 kN
57.451 KN

FIGURE 2.22 Member end moments and shear.
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100 kN
B 2m 1 4m

_’

>

_—

—>

>

—> SC/IITM

—»

> E constant
30 KN/mf—»

=

>

>

—_—

-

-

5 %745 kNm

S63.699 KN T e
m
i
57.451 kN 42.552 kN

FIGURE 2.23 Final end moments and shear.

MATLAB program:

o

n = 3; % number of members

I = [2.28E-3 3.125E-3 2.28E-3]; %Moment of inertis in m4
6 5]; % length in m

A = [0.135 0.15 0.135]; % Area in m2

theta= [90 0 -53.123]; % angle in degrees

uu = 6; % Number of unrestrained degrees of freedom

ur = 6; % Number of restrained degrees of freedom

uul = [1 2 3 4 5 6]; % global labels of unrestrained dof
url = [7 8 9 10 11 12]; % global labels of restrained dof
11 = [7 1 9 4 8 3]; % Global labels for member 1

12 = [1 2 4 6 3 5]; % Global labels for member 2

13 = [2 10 6 12 5 11]; % Global labels for member 3

1= [11; 12; 13];

dof = uu + ur; % Degrees of freedom

Ktotal = zeros (dof);

Ttl = zeros (6); Transformation matrix for member 1

Tt2 = zeros (6); % Transformation matrix for member 2

Tt3 = zeros (6); % Transformation matrix for member 3
feml= [40; -40; 60; 60; 0; 0]; % Local Fixed end moments of
member 1

fem2= [88.89; -44.44; 66.67; 33.33; 0; 0]; % Local Fixed end
moments of member 2

[l
I
'S

o°
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fem3= [0; 0; 0; 0; 0; 0]; % Local Fixed end moments of member 3

%% rotation coefficients for each member
rcl = 4.*I./L;

rc2 = 2.*I./L;

rc3 = A./L;

cosd (theta) ;

sind (theta) ;

Q Q0
]
o

%% stiffness matrix 6 by 6
for i = 1:n
Knew = zeros (dof);
k1 = [rcl(i); rc2(i); (rcl(i)+rc2(i))/L(i);
(- (rcl(i)+rc2(i))/L(i)); 0; 0l;
k2 = [rc2(i); rcl(i); (rcl(i)+rc2(i))/L(i);
(- (rcl(i)+rc2(i))/L(i)); 0; 0;1;
k3 = [(rel(i)+rc2(i))/L(i); (rcl(i)+rc2(i))/L(1);
(2% (rcl (i) +rc2 (1)) /(L(1)*2)); (-2*(rcl(i)+rc2(i))/(L(1i)"*2));
0; 0;1;
k4 -k3;
k5 = [0; 0; 0; 0; rc3(i); -rec3(i)]l;
k6 = [0; 0; 0; 0; -rc3(i); rc3(i)]
K = [kl k2 k3 k4 k5 ké6];
fprintf ('Member Number =');
disp (1);
fprintf ('Local Stiffness matrix of member, [K] =

1

disp (K);

T1 = [1; 0; 0; 0; 0; 0];

T2 = [0; 1; 0; 0; 0; 0];

T3 = [0; 0; cx(i); 0; cy(di); 0];
T4 = [0; 0; 0; cx(i); 0; cy(i)];
T5 = [0; 0; -cy(i); 0; cx(i); 0];
Te = [0; 0; 0; -cy(i); 0; cx(i)];
T = [T1 T2 T3 T4 T5 T6];

fprintf ('Tranformation matrix of member, [T] = \n');
disp (T);

Ttr = T';

fprintf ('Tranformation matrix Transpose, [T] = \n');
disp (Ttr);

Kg = TEr*K*T;
fprintf ('Global Matrix, [K global]l = \n');
disp (Kg);
for p = 1:6
for g = 1:6
Knew ((1(i,p)), (1(i,9))) =Kg(p,q);
end
end
Ktotal = Ktotal + Knew;
if 1 ==
Ttl= T;
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Kgl=Kg;
fembarl= Ttl'*feml;
elseif i ==
Tt2 = T;
Kg2 = Kg;
fembar2= Tt2'*fem2;
else
T3 = T;
Kg3=Kg;
fembar3= Tt3'*fem3;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal]l = \n');
disp (Ktotal) ;
Kunr = zeros(6);
for x=1:uu
for y=1:uu
Kunr (x,y) = Ktotal (x,vy) ;
end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu] = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

jl= [-48.89; 44.44; 60; -66.67; 0; -33.333; -40; 60; 0; 0; O;
0]; % values given in kN or kNm

jlu jl(1l:uu,1); % load vector in unrestrained dof

delu = Kuulnv*jlu;

fprintf ('Joint Load vector, [Jl]l = \n');

disp (§1');

fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu') ;

delr = zeros (ur,1);

del = zeros (dof,1);

del = [delu; delr];
deli= zeros (6,1);
for i = 1:n
for p = 1:6
deli(p,1) = del((1(i,p)).,1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+fembarl;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbarl') ;
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fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
elseif i ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');
else
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fembar3;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar3') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar3');
end
end
%% check
mbar = [mbarl'; mbar2'; mbar3'];
jf = zeros(dof,1);
for a=1:n
for b=1:6 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
end
fprintf ('Joint forces = \n');
disp (Ff£');

MATLAB output:

Member Number = 1
Local Stiffness matrix of member, [K] =

0.0023 0.0011 0.0009 -0.0009 0 0
0.0011 0.0023 0.0009 -0.0009 0 0
0.0009 0.0009 0.0004 -0.0004 0 0
-0.0009 -0.0009 -0.0004 0.0004 0 0

0 0 0 0 0.0338 -0.0338

0 0 0 0 -0.0338 0.0338
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Tranformation matrix of member, [T] =

1 0 0 0 0 0
o 1 0 O 0
o o o o0 - 0
0O 0 0 O o -1
0o 0 1 ©0 0 0
0O o0 0 1 0

Tranformation matrix Transpose, [T] =

O O O o o K
O O O o+ o
O B O O O O
H O O O o o
O O O B O o
O O B O O O

Global Matrix, [K global] =

0.0023 0.0011 0 0 -0.0009 0.0009

0.0011 0.0023 0 0 -0.0009 0.0009

0 0 0.0338 -0.0338 0 0

0 0 -0.0338 0.0338 0 0

-0.0009 -0.0009 0 0 0.0004 -0.0004

0.0009 0.0009 0 0 -0.0004 0.0004
Member Number = 2

Local Stiffness matrix of member, [K]

0.0021 0.0010 0.0005 -0.0005 0 0
0.0010 0.0021 0.0005 -0.0005 0 0
0.0005 0.0005 0.0002 -0.0002 0 0
-0.0005 -0.0005 -0.0002 0.0002 0 0
0 0 0 0 0.0250 -0.0250
0 0 0 0 -0.0250 0.0250

Tranformation matrix of member, [T] =

O O O O o K
O O O O KB o
o O O B O o
O O BB O O o
O P O O O O
P O O O o o
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Tranformation matrix Transpose, [T] =

O O O O o K
o O O o - o
O O O O o
o O B O O o
O P O O O o
H O O O o o

Global Matrix, [K global] =

0.0021 0.0010 0.0005 -0.0005 0 0
0.0010 0.0021 0.0005 -0.0005 0 0
0.0005 0.0005 0.0002 -0.0002 0 0
-0.0005 -0.0005 -0.0002 0.0002 0 0
0 0 0 0 0.0250 -0.0250
0 0 0 0 -0.0250 0.0250
Member Number = 3
Local Stiffness matrix of member, [K] =
0.0018 0.0009 0.0005 -0.0005 0 0
0.0009 0.0018 0.0005 -0.0005 0 0
0.0005 0.0005 0.0002 -0.0002 0 0
-0.0005 -0.0005 -0.0002 0.0002 0 0
0 0 0 0 0.0270 -0.0270
0 0 0 0 -0.0270 0.0270
Tranformation matrix of member, [T] =
1.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 0.6001 0 0.7999 0
0 0 0 0.6001 0 0.7999
0 0 -0.7999 0 0.6001 0
0 0 0 -0.7999 0 0.6001
Tranformation matrix Transpose, [T] =
1.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 0.6001 0 -0.7999 0
0 0 0 0.6001 0 -0.7999
0 0 0.7999 0 0.6001 0
0 0 0 0.7999 0 0.6001
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Global Matrix, [K global] =

0.0018 0.0009 0.0003 -0.0003 0.0004 -0.0004
0.0009 0.0018 0.0003 -0.0003 0.0004 -0.0004
0.0003 0.0003 0.0174 -0.0174 -0.0129 0.0129
-0.0003 -0.0003 -0.0174 0.0174 0.0129 -0.0129
0.0004 0.0004 -0.0129 0.0129 0.0099 -0.0099
-0.0004 -0.0004 0.0129 -0.0129 -0.0099 0.0099

Stiffness Matrix of complete structure, [Ktotal] =
Columns 1 through 10

0.0044 0.0010 0.0009 0.0005 0 -0.0005 0.0011 -0.0009 0 0
0.0010 0.0039 0 0.0005 0.0004 -0.0002 0 0 0 0.0009
0.0009 0 0.0254 0 -0.0250 0 0.0009 -0.0004 0 0
0.0005 0.0005 0 0.0339 0 -0.0002 0 0 -0.0338 0

0 0.0004 -0.0250 0 0.0349 -0.0129 0 0 0 0.0004
-0.0005 -0.0002 0 -0.0002 -0.0129 0.0175 0 0 0 0.0003
0.0011 0 0.0009 0 0 0 0.0023 -0.0009 0 0
-0.0009 0 -0.0004 0 0 0 -0.0009 0.0004 0 0

0 0 0 -0.0338 0 0 0 0 0.0338 0

0 0.0009 0 0 0.0004 0.0003 0 0 0 0.0018

0 -0.0004 0 0 -0.0099 0.0129 0 0 0 -0.0004

0 -0.0003 0 0 0.0129 -0.0174 0 0 0 -0.0003

Columns 11 through 12

0 0

-0.0004 -0.0003

0 0

0 0

-0.0099 0.0129

0.0129 -0.0174

0 0

0 0

0 0

-0.0004 -0.0003

0.0099 -0.0129

-0.0129 0.0174

Unrestrained Stiffness sub-matrix, [Kuu] =

0.0044 0.0010 0.0009 0.0005 0 -0.0005
0.0010 0.0039 0 0.0005 0.0004 -0.0002
0.0009 0 0.0254 0 -0.0250 0
0.0005 0.0005 0 0.0339 0 -0.0002
0 0.0004 -0.0250 0 0.0349 -0.0129

-0.0005 -0.0002 0 -0.0002 -0.0129 0.0175
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Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =

1.0e+03 *
0.2587 -0.0592 -0.1255 -0.0035 -0.1188 -0.0801
-0.0592 0.2772 -0.0618 -0.0036 -0.0649 -0.0464
-0.1255 -0.0618 1.2623 0.0075 1.2396 0.9048
-0.0035 -0.0036 0.0075 0.0296 0.0075 0.0057
-0.1188 -0.0649 1.2396 0.0075 1.2567 0.9175
-0.0801 -0.0464 0.9048 0.0057 0.9175 0.7271
Joint Load vector, [Jl] =

-48.8900 44.4400 60.0000 -66.6700 0 -33.3330

-40.0000 60.0000 0 0 0 0
Unrestrained displacements, [DelU] =

1.0e+04 *

-1.9906 1.3283 4.8465 -0.1702 4.6213 3.1529
Member Number = 1

Global displacement matrix [DeltaBar] =

1.0e+04 *
0 -1.9906 0 -0.1702 0 4.8465

Global End moment matrix [MBar] =

58.7450 -43.9479 57.4513 -57.4513 -63.6993 -56.3007

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e+04 *
-1.9906 1.3283 -0.1702 3.1529 4.8465 4.6213

Global End moment matrix [MBar] =

43.9479 -54.8100 57.4513 42.5487 56.3007 -56.3007

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e+04 *
1.3283 0 3.1529 0 4.6213 O

Global End moment matrix [MBar] =

54.8100 42.6958 -42.5517 42.5517 56.3007 -56.3007

Joint forces =

0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0030
58.7450 -63.6993 57.4513 42.6958 -56.3007 42.5517
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3 Planar Truss Structures

3.1 PLANAR TRUSS SYSTEM

In a truss system, joints are assumed to be pinned, which means that there is no
moment transfer. Therefore, they can only resist the axial force and axial deforma-
tion. Thus, at every node or joint in a truss system, there are only two possible inde-
pendent components of joint translation with respect to the reference axes system.
Similarly, in the local axes system, each joint can have only two joint translation.
Thus, there is no rotations at the ends.

3.1.1 TRANSFORMATION MATRIX

The following Figure 3.1 explains the transformation between the local and global
axes. Consider a truss member inclined to an arbitrary angle of 6. This angle should
always be measured with respect to the global axes (X-Y). There will be independent
translations happening along X and Y directions.

We also know that,

C,=cos 6, C),=sin 0.

In order to convert the local responses with respect to the reference axes responses,
the transformation matrix can be written as follows:

Dr ¢, 0 -C 0 ||ps
Ps| _ 0 C, 0 _Cy Ds
P ¢ 0 G 0 ||p 3.1)
Pn O Cy 0 Cx ﬁh
{r}, =[T]{p},
Hence,
{ST}i = |:TT ]i {ST}i
B (3.2)
{8r), =[] {5},
where,
5, 8,
6S < gs
{67}1‘ = 6; ’ {ST}i - 8,
61,, Sh
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(Rgi: 63) Xm (ISS, 65)

N7 (Pi6n) B
: (Phrdh)

Ym

SC/IITM

(Pis)

X
(1) Local axes system (i) Reference (Global) axes system

FIGURE 3.1 Transformation between local and global axes.

3.1.2  STIFENESS MATRIX

Now, the standard stiffness matrix of the truss element without end rotations is sim-
ply given as follows:

(0 0 0 0

0 0 0 0
[k ]=lo o AE _AE
l l

0 o _AE AE

L ! I

Now, the global stiffness matrix of the truss member can be obtained using the fol-
lowing equation:

= T
[KT]:' = [TT :|i [KT :|i I:TT:I,' (3.3
The responses of the truss member in the reference axes system is given by,

[ﬁrl :[I?Tl{gr}i +{Fp}i (3.4)

where,
ﬁr ips
n _ ﬁs T _ pr
I:PT :|i - 1*75 ’ { p}i - Fpt
ﬁh th i

Hence, the planar truss problem is much simpler than the orthogonal and non-
orthogonal structures problem.
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Example problems with computer program

EXAMPLE 3.1:

125

Analyze the planar truss system shown in Figure 3.2 using the stiffness method. E

is constant for all the members.

SOLUTION:

1. Marking restrained and unrestrained degrees-of-freedom:
Unrestrained degrees-of-freedom=4 (3,, 8,, 8,, 8,)
Restrained degrees-of-freedom=4 (5;, &;, §,, &)

The global axes system and the local axes for every member should be

marked to find 0.

The unrestrained and restrained degrees-of-freedom are marked. The

local and global axes system are also shown in Figure 3.3.

Ends 0
Member j k  Length (m) (degrees)
AB A B 4 90
BC B C 4 0
CD C D 4 90
BD B D 5.646 —45
AC A C 5.646 45

G

-0.707
-0.707

Global
Labels
(6,2,5,1)
(2,4,1,3)
(8,4,7,3)
(2,8,1,7)
(6,4,5,3)

2. Calculation of local stiffness matrix:

The local stiffness matrix for the truss element is given by,

0O 0
0O 0
[Kr] =10 o
0O 0

o O O O

Kge =Ex107

o O O O

W=l
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20 kKN
E constant
B A=5000 mm?
40IN 0.8A — ¢ ¥+
SC / ™
4m
1.2A
A D . A
ANNNNNN\Y
4m 1

FIGURE 3.2 Truss example.

S6l”

X

FIGURE 3.3 Marking degrees-of-freedom.
®® O G
0 0

0 0 4

125 -1.25((7)

-1.25 1.25 |(3

® © O

KCD :Ex1073

o O O

N
.OOOO

0 0 0 o 102
KBD :EX1073 0 0 0 0

0 0 1.061 -1.061|(1

0 0 -1.061 1.061]|7)
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Kac =Ex107

®
0
0
0
0

3. Calculation of transformation matrix:

-1 0
-1
of I

0

[7]s =

S —- O O
- O O O
o o

o

[ 0.7071
0
-0.7071
0

[71s =

[0.7071
0
0.7071
0

[7],c =

DENG) 3
0 0 0o 1)
0 0 0o |(4
0 1.061 -1.061/(5)
0 -1.061 1.061 (3
1.0 0 0
0 1 0 0
]BC = 0 0 1 O ! [T]CD =
0 0 0 1
0 0.7071 0
0.7071 0 0.7071
0 0.7071 0
~0.7071 0 0.7071]
0 -0.7071 0
0.7071 0 -0.7071
0 0.7071 0
0.7071 0 0.7071 |

4. Calculation of the global stiffness matrix:

The global stiffness matrix of all the members are calculated by using the

following relationship:

[ET :|,- = [TT ],T [KT ]i [TT ]i

©® 2 O
0.0013  -0.0013 0
_ ~0.0013  0.0013 0
KAB=E
0 0 0
0 0 0
2)(4) (1) (3
0o 0 0 o0]2
C _gl0 0 0 o]
Mo 0 1 <11
0o 0 -1 1|3
DENG)
0.0013  -0.0013 0
© _g|700013 00013 0
R 0 0 0
0 0 0

1

O]

0|02

01

01

(=]
©

0|4

Q

0|03

o = O O

- O O O

127
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2 1 @
0.5304  -0.5304 -0.5304  0.5304 |(2
-0.5304  0.5304 0.5304  -0.5304

RBD = E><1073
-0.5304 0.5304 05304 -0.5304(1
0.5304 -0.5304 -0.5304 0.5304 |(7)
® 4 ® 3
0.5304 -0.5304 0.5304  -0.5304](6)
_ ,|-0.5304 05304 -0.5304 0.5304 |(4
Kic =Ex10

0.5304 -0.5304 0.5304 -0.5304|(5)
-0.5304 0.5304 -0.5304 0.5304 |(3

The total stiffness matrix is obtained by assembling the global stiffness
matrices of all members with respect to the global labels. From the total
stiffness matrix, the stiffness matrix for the unrestrained degrees-of-free-
dom can be partitioned.

1 2 3 4
0.0015  -0.005 -0.0010 0 1
(K]~ £ —-0.005 0.0018 0 0 2
“d71-0.0010 0 0.0015  0.0005 (3
0 0 0.0005 0.0018|(4

1.5534 0.4628 1.1319  -0.3372
1X1073 0.4628 0.6995 0.3372  -0.1005
E 1.1319 0.3372 1.5534  -0.4628

-0.3372 -0.1005 -0.4628  0.6995

K] =

5. Estimation of joint load vectors:
The joint load vector can be written as follows:

+40| (1
0 |(2
0 3
o |-20| (4
[/L:': 0 @
0 ®
0@
0

The joint load vector in unrestrained degrees-of-freedom can be parti-
tioned from the previous matrix as follows:
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KW (=

(8) =[Ku ] (s}

_ 1x107™* | 2.0521
{S}u = E

6. Calculation of member forces:

Ve -25.6509
_ v, 25.6509 |
Muyp=142t= Mo =
AB H5 O ’ BC
H, 0
VA -25.6509
_ A 25.6509
Mpp =7 = ¢ =
H, 26.6509
H, -25.6509

v,

Hy

,I:IS

Mac

6.881
5.4532
-2.7479
0 Vs
0 B e
’ MCD: \14 =
14.3491 H,
-14.3491 Hs
A —14.3491
Vv, 14.3491
CHs [ ]-14.3491
Hs 14.3491

The member and find end forces are shown in Figures 3.4 and 3.5.

- B C
14.349 kKN -14.349 kN
SC/IITM
5.65 kKN
25.261 kN C 14.349 kKN
B
25.261 kKN 14.349kN
4m 4m
A A -14.349 kN -25.261 kN
>
125.65 kN T_14.349 KN 25.261 kN

FIGURE 3.4 Member end forces.

C

D

129

34.3491
-34.3491
0
0

1-34.349 kN

34.349 kKN
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20 kN
E constant
B A=5000 mm?
40 kKN C -
0.8A
SC/IITM
4m
1.2A
14.349 kKN 124
-14. A p——
— 225261 kN
ANV RNNNY T
-40 kNJ® “H60 KN

FIGURE 3.5 Final end forces.

MATLAB® program:

o

n = 5; % number of members

L = [4 4 4 5.646 5.646]; % length inm

A = [5E-3 4E-3 5E-3 6E-3 6E-3]; % Area in m2

theta= [90 0 90 -45 45]; % angle in degrees

uu = 4; % Number of unrestrained degrees-of-freedom
ur = 4; % Number of restrained degrees-of-freedom
uul = [1 2 3 4]; % global labels of unrestrained dof
url = [5 6 7 8]; % global labels of restrained dof

11 = [6 2 5 1]; % Global labels for member 1
12 = [2 4 1 3]; % Global labels for member 2
13 = [8 4 7 3]; % Global labels for member 3
14 = [2 8 1 7]; % Global labels for member 4
15 = [6 4 5 3]; % Global labels for member 5

1= [11; 12; 13; 14; 15];

dof = uu + ur; % Degrees-of-freedom

Ktotal = zeros (dof) ;

Ttl = zeros (4); Transformation matrix for member
Tt2 = zeros (4); Transformation matrix for member
Tt3 = zeros (4); Transformation matrix for member
Tt4 = zeros (4); Transformation matrix for member
Tt5 = zeros (4); Transformation matrix for member 5
feml= [0; 0; O0; 0]; % Local Fixed end forces of member 1
fem2= [0; 0; 0; 0]; % Local Fixed end forces of member 2
fem3= [0; 0; 0; 0]; % Local Fixed end forces of member 3

o° o o° o
B w N

o\°
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fem4= [0; 0; 0; O0];
fem5= [0; 0; 0; 0];

Local Fixed end forces of member 4
Local Fixed end forces of member 5

)
°
)

°

o\

% rotation coefficients for each member
rc = A./L;

cosd (theta) ;

sind (theta) ;

Q0
N
o

o\
o\°

stiffness matrix 4 by 4

for i = 1:n

Knew = zeros (dof);

k1 = [0; 0; 0; 0I;

k2 = [0; 0; 0; 0];

k3 = [0; 0; rc(i); -rc(i)];
k4 = -k3;

K = [kl k2 k3 k4];

fprintf ('Member Number =');

disp (i) ;
fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);

Tl = [cx(i); 0; cy(i); 01;
T2 = [0; cx(i); 0; cy(i)];
T3 = [-cy(i); 0; cx(i); 0];
T4 = [0; -cy(i); 0; cx(i)];
T = [T1 T2 T3 T4];

fprintf ('Tranformation matrix of member, [T] = \n');
disp (T);

Ttr = T';

fprintf ('Tranformation matrix Transpose, [T] = \n');
disp (Ttr);

Kg = Ttr*K*T;
fprintf ('Global Matrix, [K global]l = \n');
disp (Kg) ;
for p = 1:4
for g = 1:4
Knew ((1(i,p)),(1(i,q))) =Kg(p,q):

end
end
Ktotal = Ktotal + Knew;
if 41 == 1

Ttl= T;

Kgl=Kg;

fembarl= Ttl'*feml;
elseif i == 2

TL2 = ;

Kg2 = Kg;

fembar2= Tt2'*fem2;
elseif i ==

T3 = T;

Kg3 = Kg;

fembar3= Tt3'*fem3;
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elseif 1 == 4
Tt4 = T;
Kg4 = Kg;
fembard= Tt4'*fem4;
else
Tt5 = T;
Kg5=Kg;
fembar5= Tt5'*fem5;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal]l = \n');
disp (Ktotal) ;
Kunr = zeros(uu) ;
for x=1:uu
for y=1:uu
Kunr (x,y)= Ktotal (x,Vy) ;
end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu]l = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

jl= [40; 0; 0; -20; 0; 0; 0; 0]; % values given in kN
jlu = [40; 0; 0; -20]; % load vector in unrestrained dof
delu = Kuulnv*jlu;

fprintf ('Joint Load vector, [Jl] = \n');

disp (31');

fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu');

delr = zeros(ur,1);

del = zeros (dof,1);
del = [delu; delr];
deli= zeros (4,1);
for i = 1:n
for p = 1:4
deli(p,1) = del((1(i,p)),1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+fembarl;
fprintf ('Member Number =');
disp (1) ;
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbarl');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
elseif i ==
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fprintf ('Global displacement matrix [DeltaBar]
disp (delbar2');
fprintf ('Global End moment matrix [MBar] =
disp (mbar2');
elseif 1 ==
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fembar3;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar]
disp (delbar3');
fprintf ('Global End moment matrix [MBar] =
disp (mbar3');
elseif 1 ==
delbar4 = deli;
mbar4= (Kg4 * delbar4)+fembar4;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar]
disp (delbar4d');
fprintf ('Global End moment matrix [MBar] =
disp (mbard');
else
delbar5 = deli;
mbar5= (Kg5 * delbar5)+fembars;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar]
disp (delbar5');
fprintf ('Global End moment matrix [MBar] =
disp (mbar5');
end
end
%% check
mbar = [mbarl'; mbar2'; mbar3'; mbar4'; mbar5'];

delbar2 = deli;

mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');
disp (1) ;

jf = zeros(dof,1);
for a=1:n
for b=1:4 % size of k matrix

d

1(a,b);

jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;

end
end
fprintf

('Joint forces = \n');

disp (Ff£');
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\n');
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\n');

=\n');

\n');

=\n');

\n');
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MATLAB® output:

Member Number = 1
Local Stiffness matrix of member, [K] =

0 0
0 0
0.0013 -0.0013
-0.0013 0.0013

o O O o
o O O o

Transformation matrix of member, [T]

0o 0 -1 0
0 0 o -1
1 0 0 0
0 1 0

Transformation matrix Transpose, [T]

o

o
o O O
o O K O

Global Matrix, [K global] =

0.0013 -0.0013 0 O
-0.0013 0.0013 0 O
0 0 0 0
0 0 0 O

Member Number = 2
Local Stiffness matrix of member, [K] =

1.0e-03 *
0 0 0 0
0 0 0 0
0 0 1.0000 -1.0000
0 0 -1.0000 1.0000

Transformation matrix of member, [T]

o O o ¥
o o+ o
o B O O
P O O O

Transformation matrix Transpose, [T]

o O O H»
o O K O
o B O O
R O O O
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Global Matrix, [K global] =

1.0e-03 *
0 0 0 0
0 0 0 0
0 0 1.0000 -1.0000
0 0 -1.0000 1.0000

Member Number = 3
Local Stiffness matrix of member, [K] =

0 0
0 0
0.0013 -0.0013
-0.0013 0.0013

o O O o
o O o o

Transformation matrix of member, [T] =

0o 0 -1 0
0 O o -1
1 0 0 0
o 1 0 0

Transformation matrix Transpose, [T]

0 o 1 0
0 o 1
-1 0 0
o - 0 0

Global Matrix, [K global] =

0.0013 -0.0013 0 O
-0.0013 0.0013 0 O
0 0 0 O
0 0 0 ©

Member Number = 4
Local Stiffness matrix of member, [K] =

0 0
0 0
0.0011 -0.0011
-0.0011 0.0011

o O o o
o O o o

Transformation matrix of member, [T] =

0.7071 0 0.7071 0
0 0.7071 0 0.7071
-0.7071 0 0.7071 0

0 -0.7071 0 0.7071
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Transformation matrix Transpose, [T] =

0.7071 0 -0.7071 0
0 0.7071 0 -0.7071
0.7071 0 0.7071 0
0 0.7071 0 0.7071

Global Matrix, [K global] =

1.0e-03 *

0.5313 -0.5313 -0.5313 0.5313
-0.5313 0.5313 0.5313 -0.5313
-0.5313 0.5313 0.5313 -0.5313

0.5313 -0.5313 -0.5313 0.5313

Member Number = 5
Local Stiffness matrix of member, [K] =
0 0 0 0
0 0 0 0
0 0 0.0011 -0.0011
0 0 -0.0011 0.0011
Transformation matrix of member, [T] =
0.7071 0 -0.7071 0
0 0.7071 0 -0.7071
0.7071 0 0.7071 0
0 0.7071 0 0.7071
Transformation matrix Transpose, [T] =
0.7071 0 0.7071 0
0 0.7071 0 0.7071
-0.7071 0 0.7071 0
0 -0.7071 0 0.7071
Global Matrix, [K global] =
1.0e-03 *

0.5313 -0.5313 0.5313 -0.5313
-0.5313 0.5313 -0.5313 0.5313

0.5313 -0.5313 0.5313 -0.5313
-0.5313 0.5313 -0.5313 0.5313

Stiffness Matrix of complete structure, [Ktotall
0.0015 -0.0005 -0.0010 0 0 0
-0.0005 0.0018 0 0 0 -0.0013
-0.0010 0 0.0015 0.0005 -0.0005 -0.0005

0 0 0.0005 0.0018 -0.0005 -0.0005

0 0 -0.0005 -0.0005 0.0005 0.0005

0 -0.0013 -0.0005 -0.0005 0.0005 0.0018

-0.0005 0.0005 0 0 0 0
0.0005 -0.0005 0 -0.0013 0 0

0.0005

0.0005

.0013

0.0005

0.0018
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Unrestrained Stiffness sub-matrix, [Kuu] =

0.0015 -0.0005 -0.0010 0
-0.0005 0.0018 0 0
-0.0010 0 0.0015 0.0005

0 0 0.0005 0.0018

Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =

1.0e+03 *

1.5517 0.4629 1.1303 -0.3371
0.4629 0.6994 0.3371 -0.1006
1.1303 0.3371 1.5517 -0.4629
-0.3371 -0.1006 -0.4629 0.6994

Joint Load vector, [Jl] =

40 0 O -20 O O O O

Unrestrained displacements, [DelU] =
1.0e+04 *
6.8812 2.0525 5.4468 -2.7475

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e+04 *
0 2.0525 0 6.8812

Global End moment matrix [MBar] =
-25.6568 25.6568 0 0

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e+04 *
2.0525 -2.7475 6.8812 5.4468

Global End moment matrix [MBar] =
0 0 14.3432 -14.3432

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e+04 *
0 -2.7475 0 5.4468

Global End moment matrix [MBar] =

34.3432 -34.3432 0 O
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Member Number = 4
Global displacement matrix [DeltaBar] =

1.0e+04 *
2.0525 0 6.8812 O

Global End moment matrix [MBar] =
-25.6568 25.6568 25.6568 -25.6568

Member Number = 5
Global displacement matrix [DeltaBar] =

1.0e+04 *
0 -2.7475 0 5.4468

Global End moment matrix [MBar] =
-14.3432 14.3432 -14.3432 14 .3432
Joint forces =

40.0000 0.0000 -0.0000 -20.0000 -14.3432 -40.0000 -25.6568 60.0000

EXAMPLE 3.2:

Analyze the planar truss system shown in Figure 3.6 using the stiffness method. E
is constant for all the members.

SoLuTION:
1. Marking restrained and unrestrained degrees-of-freedom:

Unrestrained degrees-of-freedom=4 (§,, 8,, 85, 8, 85, &, 5, &)
Restrained degrees-of-freedom=4 (8, 8,,, 8;;, 8;,)

70 kKN
E constant
B = 2
20 KN A=5000 mm’ C D _
0.8A SCAIITM 0.8A

12A

2 m

| 3m [P 3m |

FIGURE 3.6 Truss example.
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The unrestrained and restrained degrees-of-freedom are marked in the
truss, as shown in Figure 3.7.

Ends Length 0 Global

Member j k (m) (degrees) C, C, Labels
AB A B 3 90 0 1 (10,2,9,1)
BC B C 3 0 1 0 (2,4,1,3)
CD C D 3 0 1 0 (4,6,3,5)
DE E D 3 90 0 1 (12,6,11,5)
AF A F 3 0 1 0 (10,8,9,7)
FE F E 3 0 1 0 (8,12,7,11)
BF B F 4.242 -45 0.707 -0.707 (2,8,1,7)
CF C F 3 +90 0 1 (8,4,7,3)
DF D F 4.242 -135 -0.707 0.707 (6,8,5,7)

2. Calculation of the local stiffness matrix:
The local stiffness matrix for the truss element is given by,

0 O 0 0
0 O 0 0
[KT]i: 0 0 ﬁ _ﬁ
/ /
AE AE
o o -2 2=
L / I

20kN

mem
Il
[
AN 9

) 3m

8ol

m

YIu

FIGURE 3.7 Marking restrained and unrestrained degrees-of-freedom.
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0 0 0 0 0 0 O 0
L0 0 0 0 L0 0 o0 0
KAB =Ex10 ’ KBC =£x10
o 0 1.7 =17 0 0 13 -13
0 0 -17 1.7 0 0 -13 13|
[0 o 0 0 [0 0 0 0 ]
L0 0 0 0 L0 0 0 0
KCD:EX1O ’ KDE =Ex10
0 0 13 -13 o 0 17 -17
0 0 -13 13 0 0 -17 1.7
0 0 0 0 ] (0 0 0 0
Lo o 0 0 L0 0 0 0
KAF =Ex10 ’ K/:E =Ex10
0 0 13 -13 0 0 13 -13
0 0 -13 13| 0 0 -13 13
0 0 0 0 ] [0 o 0 0
L0 0 0 0 L0 0 0 0
KBF =Ex10 ’ KCF =Ex10
0 0 1.4 -14 o 0 1.7 -17
0 0 -14 14| 0 0 -1.7 1.7
0 0 0 0
Lo o 0 0
KDF:EX10
0 0 14 -14
0 0 -14 14
3. Calculation of transformation matrix:
[0 0 -1 0] 1 0 0 O] 1 0 0 O
e 0 0 0 -1 i - 0 1 0 0 1 - 0 1 0 0
411 0 o ot B Jo o 1 of/t¥ jo 0o 1 0
o 1 0 0] 0o 0 0 1] 0 0 0 1
(0 0 -1 0] 1 0 0 0] 1 0 0 O
. - 0 0 0 -1 7. - 0 1 0 O (] - 0 1 0 0
o110 o0 oY o o 1 ot jlo o 1 0
o 1 0 0] 0 0 0 1] 0 0 0 1
0.7071 0 0.7071 0 0 0 -1 0
i - 0 0.7071 0 0.7071 (] - 0 0 0 -1
BF 1 —0.7071 0 0.7071 o |"Yr 11 0 0 o0
0 -0.7071 0 0.7071 0 1 0 ©
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07071 0 0.7071 0
0 07071 0 0.7071

["hor = _o.7071 0 ~0.7071 0
0 07071 0  —0.7071

4. Calculation of the global stiffness matrix:
The global stiffness matrix of all the members are calculated by using the

following relationship:

(K] =[n] [K ][]
2 @d

0.0017 -0.0017 0 O
K. _g|700017 00017 0 0 (2
A 0 0 o ol
0 0 o of (1
2) (4 1 3
0 0 0 0 2
_ 0 0 0 0 4
KBC = E
0 0 00013 -0.0013|(1
0 0 -0.0013 0.0013 [(3
4) (6 3 5
0 0 0 0 4
_ 0 0 0 0 6
KCD = E ’
0 0 00013 -0.0013](3
0 0 -0.0013 0.0013 | (5
@ 6) )G
0.0017  -0.0017 0 0]G2
K _g|700017 00017 0 0|(6
bEe 0 0 0 0lGD
0 0 0 0|(s
8 © 7
0 0 0 0 (10)
Co_gl0 0 0 0 8
" Tlo o 00013 -0.0013| (9)
0 0 -0.0013 0.0013| (7
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8 @ @)
0 0 0 0 8
_ 0 0 0 0
Kee =E @
0 0 00013 -0.0013|(7
0 0 -0.0013 0.0013 |7
2 8 1 7
0.7072  -0.7072 -0.7072  0.7072 ](2
_ ,|-0.7072  0.7072 07072 -0.7072|(8
Kgr = Ex10
-0.7072  0.7072  0.7072  -0.7072|(1
0.7072  -0.7072 -0.7072  0.7072 |(7
8 4 7) (3
0.0017 -0.0017 0 0](8
_ ~0.0017 0.0017 0 0|4
Ker =E
0 0 0 0|7
0 0 0 0|3
6 8 5 7
0.7072  -0.7072  0.7072  -0.70727(6
_ ,|-0.7072  0.7072  -0.7072  0.7072 |(8
KDF =£x10
0.7072  -0.7072  0.7072  -0.7072|(5
~0.7072  0.7072  -0.7072  0.7072 |(7

The total stiffness matrix is obtained by assembling the global stiffness
matrices of all members with respect to the global labels.

From the total stiffness matrix, the stiffness matrix for the unrestrained
degrees-of-freedom can be partitioned.

1 2 3 4 5 6 7 8
2 -0.7 -13 0 0 0 -0.7 0.7
-0.7 2.4 0 0 0 0 0.7 =072
-1.3 0 2.7 0 -1.3 0 0 0 3
[Kuu] _Ex10° 0 0 0 1.7 0 0 0 -1.7 (4
0 0 -1.3 0 1.2 0.7 =07 -0.7(5
0 0 0 0 0.7 24 =07 -0.7|(6
-0.7 0.7 0 0 -0.7  -0.7 4.1 0 |(7
| 0.7 0.7 0 -1.7  -0.7 -0.7 0 3.1 (8
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[1.757 03 1.382
0.3 0.6 0.3

-0.375 0.3 0
1.007 03 1.382
-0.3 0 -0.3
0.375 0 0.375

|-0.375 0.3 0

[Kuu];[ = %x 107

5. Estimation of joint load vectors:

1.382 03 1.7570

-0.375
0.3
0
1.982
0.375
0.3
0
1.382

1.007
1.3
1.382
0.375
1.757
-0.3
0.375
0.375

The joint load vector can be written as follows:

]

1
2
3
4
5
6
7
8
@
@
®)

O O O O O o o O

©

-0.3

-0.3
0.3
-0.3
0.6

0.3

0.375

0.375

0.375

0.375
0

143

-0.375]
0.3

1.382
0.375
0.3

1.382 |

The joint load vector in unrestrained degrees-of-freedom can be parti-
tioned from the previous matrix as follows:

7.]- 70

20
0
0
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45 kN 45 kN 45 kKN 45 kN
B 45 c3 c_ 45l PP
sc/lTM
‘r.zs KN T 45 kN
BN 70 kN
B c D
25kN
25.261 kKN
-25kN
A 25 kN ! F ! E
T T 145 .
25kN 70 kKN
A -10kN F 10 kN F 10kN E -10kN
—— ) " —
FIGURE 3.8 Member end forces.
70 KN
B C D
20 kKN -
0.8A SCAIITM 0.8A
12A
o 3m
-10KN F 10 kN
d E
25 kNi 3m N £l f45 KN
I |

FIGURE 3.9 Final end forces.

6. Calculation of member forces:

Vio 25 A 0 Vi 0
_ v, 25| _ V, 0] - Ve 0
M =< _" 4= , Mpc =4 — + = , Mcp =4 — ¢ =
AB H9 0 BC H1 45 CD H3 45
H, 0 Hs -45 Hs —45
Via 45 Vio 0 Vs 0
Ve 45| _ Vi 0 Vi 0
Mpp =1 % t= , My =4 0 b= M =4 =
» 0 Hy[ |-10 H, 10
Hs 0 H, 10 His -10




Planar Truss Structures

VA 25 Ve 70
_ Vs 25| _ A -70|
Mg =4 2t = , Mo =4t = , Mpr =
BF A, _75 CF H, 0 DF
H, 25 Hs 0

The member end forces and final end forces are given in Figures 3.8 and 3.9

respectively.

MATLAB program:

n = 9; % number of members
L = [3 333 3 3 4.242 3 4.242]; % length in

]
Il

)

uu = 8; % Number of unrestrained degrees-of-f
ur = 4; % Number of restrained degrees-of-fre

Ve
Vy
75

H,

m

°

[SE-3 4E-3 4E-3 5E-3 4E-3 4E-3 6E-3 5E-3 6E-3]; %
theta= [90 0 0 90 0 O -45 90 -135]; % angle in degrees

reedom
edom

145

Area in m2

uul = [1 2 3 4 5 6 7 8]; % global labels of unrestrained dof
url = [9 10 11 12]; % global labels of restrained dof

11 = [10 2 9 1]; % Global labels for member 1
12 = [2 4 1 3]; Global labels for member 2

13 = [4 6 3 5]; Global labels for member 3

14 = [12 6 11 5]; % Global labels for member

15 = [10 8 9 7]; % Global labels for member 5
16 = [8 12 7 11]; % Global labels for member

17 = [2 8 1 7]; % Global labels for member 7

18 = [8 4 7 3]; % Global labels for member 8

19 = [6 8 5 7]; % Global labels for member 9

1= [11; 12; 13; 14; 15; 16; 17; 18; 19];

dof = uu + ur; % Degrees-of-freedom

Ktotal = zeros (dof);

Ttl = zeros (4); Transformation matrix for

Tt2 = zeros (4); Transformation matrix for

Tt3 = zeros (4); Transformation matrix for

Tt4 = zeros (4); Transformation matrix for

Tt5 = zeros (4); Transformation matrix for

Tt6 = zeros (4); Transformation matrix for

Tt7 = zeros (4); Transformation matrix for

Tt8 = zeros (4); Transformation matrix for

o
s
o

s

o° o o° o° o° o° o° o° o°

4

6

member
member
member
member
member
member
member
member
member

W J o0 Ul WN R

9

Tt9 = zeros (4); Transformation matrix for
feml= [0; 0; 0; 0]; % Local Fixed end forces
fem2= [0; 0; 0; 0]; % Local Fixed end forces
fem3= [0; 0; 0; 0]; % Local Fixed end forces
fem4= [0; 0; 0; 0]; % Local Fixed end forces
fem5= [0; 0; 0; 0]; % Local Fixed end forces
femé6= [0; 0; 0; 0]; % Local Fixed end forces
fem7= [0; 0; 0; 0]; % Local Fixed end forces

of
of
of
of
of
of
of

member
member
member
member
member
member
member

< o0 U W N
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fem8= [0; 0; 0; 0];
fem9= [0; 0; 0; 0];

Local Fixed end forces of member 8
Local Fixed end forces of member 9

)
°
)

°

o\

% rotation coefficients for each member
rc = A./L;

cosd (theta) ;

sind (theta) ;

Q Q
Ko
I

o\
o\°

stiffness matrix 4 by 4

for i = 1:n

Knew = zeros (dof);

k1 = [0; 0; 0; 0OI;

k2 = [0; 0; 0; 0];

k3 = [0; 0; rc(i); -rc(i)];
k4 = -k3;

K = [kl k2 k3 k4];

fprintf ('Member Number =');

disp (i);
fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);

Tl = [cx(i); 0; cy(i); 01;
T2 = [0; cx(i); 0; cy(i)];
T3 = [-cy(i); 0; cx(i); 0];
T4 = [0; -cy(i); 0; cx(i)];
T = [T1 T2 T3 T4];

fprintf ('Transformation matrix of member, [T] = \n');
disp (T);

Ttr = T';

fprintf ('Transformation matrix Transpose, [T] = \n');
disp (Ttr);

Kg = Ttr*K*T;
fprintf ('Global Matrix, [K global]l = \n');
disp (Kg) ;
for p = 1:4
for g = 1:4
Knew ((1(i,p)), (1(i,q))) =Kg(p,q):

end
end
Ktotal = Ktotal + Knew;
if 41 == 1

Ttl= T;

Kgl=Kg;

fembarl= Ttl'*feml;
elseif i == 2

TL2 = ;

Kg2 = Kg;

fembar2= Tt2'*fem2;
elseif i ==

T3 = T;

Kg3 = Kg;

fembar3= Tt3'*fem3;
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elseif i == 4
Tt4 = T;
Kg4 = Kg;
fembard= Tt4'*xfem4;
elseif 1 == 5
Tt5 = T;
Kg5 = Kg;
fembar5= Tt5'*fem5;
elseif i ==
Tte = T;
Kgé6 = Kg;
fembarée= Tt6'*fem6;
elseif 1 ==
Tt7 = T;
Kg7 = Kg;
fembar7= Tt7'*fem7;
elseif 1 ==
T8 = T;
Kg8 = Kg;
fembar8= Tt8'*fem§;
else
Tt = T;
Kg9=Kg;
fembar9= Tt9'*fem9;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] = \n');
disp (Ktotal) ;
Kunr = zeros(uu) ;
for x=1:uu
for y=1:uu
Kunr (x,y)= Ktotal (x,Vy);
end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu] = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

jl= [20; 0; 0; -70; 0; 0; 0; O; O0; 0; 0; 0]; % values given in kN
jlu = [20; 0; 0; -70; 0; 0; 0; 0]; % load vector in
unrestrained dof

delu = Kuulnv*jlu;

fprintf ('Joint Load vector, [Jl] = \n');

disp (31');

fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu');

delr = zeros(ur,1);

del = zeros (dof,1);
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del =

for p

end
if
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[delu; delr];
deli= zeros (4,1);
for 1 =

1:n

= 1:4

deli(p,1) = del((1(i,p)),1) ;

i

delbarl = deli;

mbarl= (Kgl * delbarl)+fembarl;
fprintf ('Member Number =');

disp (1) ;

fprintf ('Global displacement matrix
disp (delbarl');

fprintf ('Global End moment matrix
disp (mbarl');

elseif 1 ==

delbar2 = deli;

mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');

disp (1) ;

fprintf ('Global displacement matrix
disp (delbar2');

fprintf ('Global End moment matrix
disp (mbar2');

elseif 1 ==

delbar3 = deli;

mbar3= (Kg3 * delbar3)+fembar3;
fprintf ('Member Number =');

disp (1) ;

fprintf ('Global displacement matrix
disp (delbar3');

fprintf ('Global End moment matrix
disp (mbar3');

elseif 1 ==

delbar4 = deli;

mbar4= (Kg4 * delbar4)+fembar4;
fprintf ('Member Number =');

disp (1) ;

fprintf ('Global displacement matrix
disp (delbar4d');

fprintf ('Global End moment matrix
disp (mbard');

elseif 1 ==

delbar5 = deli;

mbar5= (Kg5 * delbar5)+fembars;
fprintf ('Member Number =');

disp (1) ;

fprintf ('Global displacement matrix
disp (delbar5');

fprintf ('Global End moment matrix
disp (mbar5');

elseif 1 ==

[DeltaBar]

[MBar]

[DeltaBar]

[MBar]

[DeltaBar]

[MBar]

[DeltaBar]

[MBar]

[DeltaBar]

[MBar]

=\n');

\n');

=\n');

\n');

=\n');

\n');

=\n');

\n');

=\n');

\n');
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delbar6 = deli;
mbaré6= (Kgé6 * delbar6)+fembaré;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbarée') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbaré') ;

elseif 1 ==
delbar7 = deli;
mbar7= (Kg7 * delbar7)+fembar7;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar7');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar7');

elseif 1 ==
delbar8 = deli;
mbar8= (Kg8 * delbar8)+fembars;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbars8');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar8');

else
delbar9 = deli;
mbar9= (Kg9 * delbar9)+fembar9;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar9');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar9');

end
end

o9

%% check
mbar = [mbarl'; mbar2'; mbar3'; mbar4'; mbar5'; mbaré';
mbar7'; mbar8'; mbar9'];
jf = zeros(dof,1);
for a=1:n
for b=1:4 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
end
fprintf ('Joint forces = \n');
disp (Ff');
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MATLAB output:

Member Number =1
Local Stiffness matrix of member, [K] =

0 0
0 0
0.0017 -0.0017
-0.0017 0.0017

o O O o
o O O o

Transformation matrix of member, [T]

0o 0 -1 0
0 0 o -1
1 0 0 0
0 1 0

Transformation matrix Transpose, [T]

0 0 1 0
0 o 0 1
- 0 0 O
o -1 0 0

Global Matrix, [K global] =

0.0017 -0.0017 O O
-0.0017 0.0017 0 O
0 0O 0 0
0 0 0 0

Member Number =2
Local Stiffness matrix of member, [K] =

0 0
0 0
0.0013 -0.0013
-0.0013 0.0013

o O o o
o O O o

Transformation matrix of member, [T]

o O o H
o O K O
o B O O
R O O o

Transformation matrix Transpose, [T]

o O o -
o O K O
o B O O
R O O o
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Global Matrix,

o O O o

o O O O

[K globall] =
0 0
0 0
0.0013 -0.0013
-0.0013 0.0013

Member Number =3

Local Stiffness matrix of member,

0 0 0 0
0 0 0 0
0 0 0.0013 -0.0013
0 0 -0.0013 0.0013
Transformation matrix of member,
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Transformation matrix Transpose,
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Global Matrix, [K global] =
0 0 0 0
0 0 0 0
0 0 0.0013 -0.0013
0 0 -0.0013 0.0013

Member Number =4

Local Stiffness matrix of member,

o O O O

Transformation matrix of member,

o B O O

0
0
0
0

R O O O

0
0

0.0017
-0.0017

0

0
-0.0017
0.0017

[X]

[T]

[T]

[X]

[T]

151
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Transformation matrix Transpose, [T] =

0 0 1 0
0 0o 1
-1 0 0 0
0 -1 0 O

Global Matrix, [K global] =

0.0017 -0.0017 O O
-0.0017 0.0017 0 O
0 o 0 O
0 0O 0 O

Member Number =15
Local Stiffness matrix of member, [K] =

0 0
0 0
0.0013 -0.0013
-0.0013 0.0013

o O O o
o O O o

Transformation matrix of member, [T]

o O O
o O+ O
o B O O
R O O O

Transformation matrix Transpose, [T]

o O O ¥
o O KB o
o B O O
R O O O

Global Matrix, [K global] =

0 0 0 0

0 0 0 0

0 0 0.0013 -0.0013

0 0 -0.0013 0.0013
Member Number = 6

Local Stiffness matrix of member, [K] =

0 0
0 0
0.0013 -0.0013
-0.0013 0.0013

o O O o

0
0
0
0
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Transformation matrix of member, [T]

o o o -
o O KB O
o B O O
H O O O

Transformation matrix Transpose, [T] =

o o o -
o O K O
o B O O
R O O O

Global Matrix, [K global] =

0 O 0 0
0 O 0 0
0 O 0.0013 -0.0013
0O 0 -0.0013 0.0013

Member Number =7
Local Stiffness matrix of member, [K] =

0 0
0 0
0.0014 -0.0014
-0.0014 0.0014

o O O o
O O O o

Transformation matrix of member, [T] =

0.7071 0 0.7071 0
0 0.7071 0 0.7071
-0.7071 0 0.7071 0
0 -0.7071 0 0.7071

Transformation matrix Transpose, [T] =

0.7071 0 -0.7071 0
0 0.7071 0 -0.7071
0.7071 0 0.7071 0
0 0.7071 0 0.7071

Global Matrix, [K global] =

1.0e-03 *

0.7072 -0.7072 -0.7072 0.7072
-0.7072 0.7072 0.7072 -0.7072
-0.7072 0.7072 0.7072 -0.7072

0.7072 -0.7072 -0.7072 0.7072
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Member Number =8
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Local Stiffness matrix of member, [K] =
0 0 0 0
0 0 0 0
0 0 0.0017 -0.0017
0 0 -0.0017 0.0017
Transformation matrix of member, [T] =
0 0 -1 0
0 0 0 -1
1 0 0 0
0 1 0 0
Transformation matrix Transpose, [T] =
0 0 1 0
0 0 0 1
-1 0 0 0
0 -1 0 0
Global Matrix, [K global] =
0.0017 -0.0017 0 0
-0.0017 0.0017 0 0
0 0 0 0
0 0 0 0
Member Number =9
Local Stiffness matrix of member, [K] =
0 0 0 0
0 0 0 0
0 0 0.0014 -0.0014
0 0 -0.0014 0.0014
Transformation matrix of member, [T] =
-0.7071 0 0.7071 0
0 -0.7071 0 0.7071
-0.7071 0 -0.7071 0
0 -0.7071 0 -0.7071
Transformation matrix Transpose, [T] =
-0.7071 0 -0.7071 0
0 -0.7071 0 -0.7071
0.7071 0 -0.7071 0
0 0.7071 0 -0.7071
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Global Matrix, [K global] =
1.0e-03 *
0.7072 -0.7072 0.7072 -0.7072
-0.7072 0.7072 -0.7072 0.7072
0.7072 -0.7072 0.7072 -0.7072
-0.7072 0.7072 -0.7072 0.7072
Stiffness Matrix of complete structure, [Ktotal] =
Columns 1 through 9
0.0020 -0.0007 -0.0013 0 0 0 -0.0007 0.0007
-0.0007 0.0024 0 0 0 0 0.0007 -0.0007
-0.0013 0 0.0027 0 -0.0013 0 0 0
0 0 0 0.0017 0 0 0 -0.0017
0 0 -0.0013 0 0.0020 0.0007 -0.0007 -0.0007
0 0 0 0 0.0007 0.0024 -0.0007 -0.0007
-0.0007 0007 0 0 -0.0007 -0.0007 0.0041 0
0.0007 -0.0007 0 -0.0017 -0.0007 -0.0007 0 0.0031
0 0 0 0 0 0 -0.0013 0
0 -0.0017 0 0 0 0 0 0
0 0 0 0 0 0 -0.0013 0
0 0 0 0 0 -0.0017 0 0
Columns 10 through 12
0 0 0
-0.0017 0 0
0 0 0
0 0 0
0 0 0
0 0 -0.0017
0 -0.0013 0
0 0 0
0 0 0
0.0017 0 0
0 0.0013 0
0 0 0.0017
Unrestrained Stiffness sub-matrix, [Kuu] =
0.0020 -0.0007 -0.0013 0 0 0 -0.0007
-0.0007 0.0024 0 0 0 0 0.0007
-0.0013 0 0.0027 0 -0.0013 0 0
0 0 0 0.0017 0 0 0
0 0 -0.0013 0 0.0020 0.0007 -0.0007
0 0 0 0 0.0007 0.0024 -0.0007
-0.0007 0.0007 0 0 -0.0007 -0.0007 0.0041
0.0007 -0.0007 0 -0.0017 -0.0007 -0.0007 0
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Inverse of Unrestrained Stiffness sub-matrix, [Kuulnverse] =
1.0e+03 *
1.7570 0.3000 1.3820 -0.3750 1.0070 -0.3000 0.3750 -0.3750
0.3000 0.6000 0.3000 0.3000 0.3000 0 0.0000 0.3000
1.3820 0.3000 1.7570 -0.0000 1.3820 -0.3000 0.3750 -0.0000
-0.3750 0.3000 -0.0000 1.9820 0.3750 0.3000 -0.0000 1.3820
1.0070 0.3000 1.3820 0.3750 1.7570 -0.3000 0.3750 0.3750
-0.3000 0 -0.3000 0.3000 -0.3000 0.6000 -0.0000 0.3000
0.3750 0.0000 0.3750 -0.0000 0.3750 -0.0000 0.3750 -0.0000
-0.3750 0.3000 -0.0000 1.3820 0.3750 0.3000 -0.0000 1.3820
Joint Load vector, [Jl] =
20 0 0 -70 0 0 0 0 0 0 0 0
Unrestrained displacements, [DelU] =
1.0e+05 *
0.6139 -0.1500 0.2764 -1.4624 -0.0611 -0.2700 0.0750 -1.0424

Member Number = 1
Global displacement matrix [DeltaBar] =

1.0e+04 *
0 -1.5000 0 6.1390

Global End moment matrix [MBar] =
25.0000 -25.0000 0 0

Member Number = 2
Global displacement matrix [DeltaBar] =

1.0e+05 *
-0.1500 -1.4624 0.6139 0.2764

Global End moment matrix [MBar] =
0 0 45.0000 -45.0000

Member Number = 3
Global displacement matrix [DeltaBar] =

1.0e+05 *
-1.4624 -0.2700 0.2764 -0.0611

Global End moment matrix [MBar] =
0 0 45.0000 -45.0000

Member Number = 4
Global displacement matrix [DeltaBar] =

1.0e+04 *
0 -2.7000 0 -0.6110
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Global End moment matrix [MBar] =

45.0000 -45.0000 O O

Member Number = 5
Global displacement matrix [DeltaBar] =

1.0e+05 *
0 -1.0424 0 0.0750

Global End moment matrix [MBar] =
0 0 -10.0000 10.0000

Member Number = 6
Global displacement matrix [DeltaBar] =

1.0e+05 *
-1.0424 0 0.0750 O

Global End moment matrix [MBar] =
0 0 10.0000 -10.0000

Member Number = 7
Global displacement matrix [DeltaBar] =

1.0e+05 *
-0.1500 -1.0424 0.6139 0.0750

Global End moment matrix [MBar] =
25.0000 -25.0000 -25.0000 25.0000

Member Number = 8
Global displacement matrix [DeltaBar] =

1.0e+05 *
-1.0424 -1.4624 0.0750 0.2764

Global End moment matrix [MBar] =
70 -70 0 0

Member Number = 9
Global displacement matrix [DeltaBar] =

1.0e+05 *
-0.2700 -1.0424 -0.0611 0.0750

Global End moment matrix [MBar] =
45.0000 -45.0000 45.0000 -45.0000
Joint forces =

20.0000 0.0000 0.0000 -70.0000 0O 0.0000 -0.0000 -0.0000 -10.0000
25.0000 -10.0000 45.0000
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4 Three-Dimensional
Analysis of Space Frames

4.1 THREE-DIMENSIONAL ANALYSIS OF STRUCTURES

In the previous section, the detailed explanation on the stiffness method of analysis
of planar orthogonal and non-orthogonal structures using beam elements and pla-
nar truss elements were given. The same algorithm and sign convention are now
extended to solve the three-dimensional structures, in order to make the analysis
very simple and easier. Let us extend the basics of the beam element discussed so far
to the three-dimensional structures. We know that the equation for joint equilibrium
of the planar structure is given by,

[K]complele {A}complele = {JL }complele + {R}complete (4 1)

The previous equation is also expandable to solve three-dimensional structures.
Similarly, the matrix equation describing equilibrium of the beam element is
given by,

(M}, =[ K, ][ T ]{8:} + {FEM}. “2)

This equation can also be extended to analyze three-dimensional structures consist-
ing of beam elements arbitrarily oriented in space.

The first task in three-dimensional analysis is to develop the stiffness matrix of
the complete structure, which can be simply done by the summation of member stiff-
ness matrices of individual elements. It is very important to note that the complete
stiffness matrix of the space system will be established in the reference axes system.

Sign convention:

Consider three axes, as shown in Figure 4.1, where the vector representing the
translation or forces are marked. Then, the right-hand thumb rule is used to mark
the direction of moment in every axis. If the thumb points toward the arrows, then
the direction of the remaining four fingers will indicate the direction of moment.
This indicates the direction of rotation or moment. All these are considered to be
positively established using the right-hand thumb rule of orthogonal coordinate axes.

4.2 BEAM ELEMENT

Let us consider a beam element fixed at both ends with the local axes (X,-y,,), as
shown in Figure 4.2. The beam has six degrees-of-freedom.

Let us extend the same algorithm used in the analysis of planar orthogonal struc-
ture to the three-dimensional structure arbitrarily oriented in space. Consider a
member with two joints ‘j” and ‘k’, as shown in Figure 4.3. The local axes system is
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FIGURE 4.1 Vector representation for translation and rotation.
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FIGURE 4.2 Fixed beam element.

represented by (X,-y,,-z,), Which are orthogonal to each other. The reference axes
system is represented by (X-Y-Z). The degrees-of-freedom are also marked in the
same manner, similar to that of the two-dimensional members. At every end, there
are three translations along three directions and three rotations about three dimen-
sions. Thus, there are twelve degrees-of-freedom now.

At the jth end, translations are (t,r,v) and rotations are (I1,n,p). Similarly, at the kth
end, the translations are (h,s,w) and rotations are (m,0,q). Thus, the stiffness matrix
will be of size 12X 12.

4.3 THE STIFFNESS MATRIX

Let us consider unit displacement or translation along ‘t’ in x,, direction at the jth
end, as shown in Figure 4.4. Similarly, unit translation is given in y,, direction at
the jth end. In these two cases, the translation occurs in the (x-y) plane. The unit
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FIGURE 4.3 Degrees-of-freedom in local axes system.

m
4 (CEabY)]
2 0 |
ki, *5_):_; 1 SC/IITM ke
7 pr

[i]

Sc/lITM

kb
ki ] %

SC/IITM

k,i,y (x—2) kxl;vv

FIGURE 4.4 Unit translation at the jth end in x,,-y,,-z,, directions.
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translation is also given in the z axis direction and it happens in the (x-z) plane.
The corresponding stiffness coefficients due to the applied unit translation are
also marked.

Let us apply unit rotations for the member, as shown in Figure 4.5, at the jth end
in all three axes.

The same procedure can be extended for the kth end also. Let us develop the coef-
ficients contributing the stiffness matrix. When unit displacement is given along ‘t’,
only t and h are influenced, and the remaining coefficients will be zero. Thus, the
first column of the stiffness matrix will have only two stiffness coefficients: k,,, k.
In the same way, the stiffness coefficients are entered in all the columns by finding
the invoked or influenced degrees-of-freedom under the application of unit displace-
ment or unit rotation. The stiffness matrix is shown in Figure 4.6.

Now, the values of these stiffness coefficients have to be found from the known
principal quantities of the beam element, in order to get the complete stiffness
matrix of a three-dimensional beam element. Thus, the complete stiffness matrix
is given by,

E?*' 0 0 0 0 0o - EI;‘*’ 0 0 0 0 0
12EI, 6FI, 12EI, 6FI,
’ r 1 ZOEI ’ 6OEI r ’ i r 1 ;)EI ’ 6(;51 F
0 0 — -— 0 0 -——— 0 -— 0
l l l I
0 0 0 = 0 0 0 0 0 - T’ 0 0
6EI, 4EI 6EI, 2EI
0 0 - ! 0 0 0 . 0 ! 0
6EI r ! 4EI 6EI r ! 2EI
0o - 0 0 0 == 0 --2= 0 0 0o ==
[K]= EA I 1 EA 5 1
—TX 0 0 0 0 0 ; 2 0 0 0 0 0
12EI 6EI 12E1 6EI
0 =5 0 0 0 -=5= 0 5 0 0 0 -
12EI, 6EI, 12EI, 6EI,
0 0 B 0 B 2 0 0 0 7 2 0 e 2 0
0 0 0 - GII" 0 0 0 0 0 GII" 0 0
6FEI, 2EI, 6EI, 4EI,
0 0 - : — 0 0 J 0 =y 0
6EI v ! 2EI 6EI : ! 4EI
0 = 0 0 0 == 0 -5 0 0 o ==

1, is called torsional constant. For the beam element, with rectangular cross-section,
I, is given by,

3 3
=" 063 L)+ 0052( L) | for hsst 43)
12 h h

where, h is the depth of the rectangular section and t is the width of the section. For
a rectangular cross-section with a very large value of h/t,

I =
12

“4.4)

X
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FIGURE 4.5 Unit rotation at the jth end in x,,-y,,-z,, directions.
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FIGURE 4.6 Stiffness coefficients.

In case of I-sections, as shown in Figure 4.7, the value of torsional constant is

given by,
_1 z 3
I, = 3 ht @.5)
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where, h is the longer dimension and t is the shorter dimension. Hence,

L= () () (515 @6)

4.4 TRANSFORMATION MATRIX

In a space frame, members can be oriented in any fashion. The local axes of the
member may not coincide with the reference axes system. In such a situation, the
stiffness matrix needs to be transformed with respect to the reference axes system. In
addition, the load applied on the local axes also needs to be transformed with respect
to the reference axes system. Most importantly, the member forces, end moments
and reactions need to be computed with respect to the reference axes system, but
they also need to be transformed to the local axes system of each member. This is
required to design the member.

Let V, be a vector that is arbitrarily oriented along the axis Y,. This has to be
transformed to the reference axes system (Y,-Y,-Y;). The vector V has its compo-
nents along the Y|, Y, and Y; axes. In order to find the components, the inclina-
tion or position of the vector with respect to the three axes should be known. In
Figure 4.8, y,, is the angle between the axes Y, and Y,. Similarly, y,, is the angle
between the axes Y, and Y, and y,, is the angle between the axes Y, and Y;. The
corresponding components are V,, V, and V;. Thus, the following relationship
will be valid.

Vi =Vycosyo
V2 = VO COS YOZ (4.7)
V3 = VO COos 'Y03

flange
T SC/IITM | 1tr

hy web

FIGURE 4.7 1 section.
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s Y1

FIGURE 4.8 Component of vector along coordinate axes.

where, v, Yo, and y; are defined as angles between the vector V,, or the axis Y, to
which the vector is aligned, whose coordinate axes are (Y,-Y,-Y;) respectively. In the
previous equation, the terms cos Yy, cos y,, and cos y; are called direction cosines.
Now, the vector V,, is resolved along the set of coordinate axes (Y,-Y,-Y5). Let us
resolve or transform this to the standard reference axes system (X-Y-Z).

Let, X,-X,-X; be the reference axes systems. Let us define the angles of X-X,-X;
and vectors V|, V,, V5. V|, V,, V; are already resolved along (Y,-Y,-Y;). Let, v,
be the angle between the V, axis and X, axis. By this logic, the angle between the
vector and the reference axes system can be defined. Thus, the V, vector makes an
angle (y,,, Y12, ¥13) With the reference axes system, the V, vector makes an angle (y,,,
Y225 Y23) With the reference axes and the V; vector makes an angle (ys;, Y3, ¥33) With
the reference axes, as shown in Figure 4.9. The set of equations that connects the
transformed components of these vectors with the known components of vectors is
given by,

Vi =Vicosyy; + Vs cosyy + Vi cosyy
V, =V, cos Y12 +V, 0875 + Vi cos Y3, “4.8)

‘73 =Vicosy3 + V087,35 + Vi cosyas
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FIGURE 4.9 Components of vector along reference axes.
Let C;=cos y;, where, I represents the (Y,-Y,-Y;) axes system and j represents the

(X,-X,-X,) axes system. Thus, the previous equation can be written in matrix form
as follows:

‘71 Cl 1 C21 C3 1

Vo= C12 C22 Csz (4-9)
‘73 C Cy Cs;
wi=[c]{v} (4.10)
Cu Cp, Cis
where, [Cs]: Cy Cpn Cy
Cy Cx Cs3

. T -1 =

It also verifies that [CS] = [CS] . 'V refers to the reference axes system and V

refers to the coordinate axes system. Please note that they do not refer to the axis of
the original vector V,,

4.5 MEMBER ROTATION MATRIX

Consider a beam element with length L,. The member has two nodes ‘" and ‘k’. The
member is oriented along its local axes system (X,,-y,,-Z,,)- This local axes system is
placed arbitrarily in space with reference to the standard reference axes system (X-Y-Z).
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Y Yy Y. are the angles of the x,, axis with respect to the X-Y-Z axes respectively,
as shown in Figure 4.10.

Let,
C, =cosy,
C, =cosvy,
C. =cosy,

As the j and k coordinates of the member positioned in space are known, the direc-
tion cosines can be written as follows:

_ X=X,
C, = 5 @.11)
C, = Y"L_in @.12)
_L—Z;
C. = 3 @.13)
L= \/(Xk X,V +(Ye-v,) +(ze-2,) @.14)

where, (X,,Y,,Z,) and (Xj,Yj,Zj) are the coordinates of the beam element placed in
space. It is now important to know that the direction cosines give the components of
the beam element only along the reference axes system, but an important information

Y
Ym
T Xm
e 4
g /
sc/itm @~ i®
f v, L !
i Ve LG,
0) b X
E Y. \\\X.\_ )Cl § e
---------------- LiCy
z Zn

FIGURE 4.10 Member rotation.
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of orientation of the local axes system with respect to reference the axes system is
not known. Therefore, it is clear that the beam element is oriented along the local
axes (x,-y,,-Z,,)- Hence, orientation of (X,,-y,-Z,,) axes or the local axes system with
respect to the reference axes system is called the y angle, which has to be estimated.
Thus, in order to find the orientation of the local axes system with respect to the ref-
erence axes system, we need to know the direction cosines and y angle.

4.6 Y-Z-X TRANSFORMATION

The direction cosines give the components of the member along the reference axes
system. Further, the y angle provides information about the orientation of the local
axes system with respect to the reference axes system. It is very important to note
that the procedure of aligning the reference axes system to that of local axes sys-
tem is called transformation. There are various schemes involved in this transfor-
mation. One such scheme is the Y-Z-X transformation, as shown in Figure 4.11,
which means rotating the reference axes about the Y-axis, then the Z-axis and finally
about the X-axis. Y-Z-X highlights the order or sequence of rotation to be carried
out. The reference axes system (X-Y-Z) will be rotated about the Y-axis first, then
about the Z-axis and lastly about the X-axis. The amount of rotation happening in
the Y and Z axes is a and p respectively, and ultimately we will get the y angle after
the rotation about the X-axis. The procedure is to hold the orthogonal axes system
(X-Y-Z) and rotate this axes system about Y-axis by a degrees.

Let, V, be the vector placed arbitrarily. Now, reference axes system is rotated
about Y-axis, where Y and Y, remains the same. The X-axis and Z-axis will move

~d Xom

U SC/ITM A
I // H

FIGURE 4.11 Y-Z-X transformation.
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to X, and Z, respectively, since the angle of rotation is a degrees. V,,V,,V, are the
components of the vector with respect to the reference axes (X-Y-Z).
From the figure,

. C,
sino = ——
JCi+C?
4.15)
C,
COSOL = ——
JCi+c?
Thus,
V.. cosoa. 0 sina ||V,
V= O 1 0 v,
Vel |=sina 0 cosa ||V,
By substituting the values of cos a and sin « in the previous matrix equation,
C o G ]
V. JCi+C? JCi+C2 [V,
Vo ¢ = 0 1 0 v,
Ve . 4 G |v .16)
JCi+C? JCi+C?

{vo} =[cJ{v}

The next step is to rotate about the Z-axis by  degrees. Since, the rotation takes place
about the Z-axis, Z, and Z; remains the same. X, and Y, will shift to X, and Y respec-
tively. Now, the vector components are V,, V;, and V, as shown in Figure 4.12.
N px> ¥ By pz
ow,

Vi cosf sinfB 0|V

Voyr=|—sin  cosB  0|{Vy

Vie 0 0 1 || Vi
sinfB=C,

cosP=+/C;+C?

By substituting these values,

W} =[G ]{Ve} @.17)
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FIGURE 4.12 Z-axis rotation.

Finally, let us rotate about the X-axis by an angle y, as shown in Figure 4.13.
Here X, will remains same as x,,. Y, and Z, will shift to y,, and z,, respectively.
Thus, y, is the angle between Y, and y,, measured from Y, toward y, or angle
between Z; and z,, measured Z, toward z,,. The idea is to bring y,, and Y aligned
and x,, and X; aligned. x,, and X, are already aligned, since the rotation is about
the X axis.

Thus,
V. 1 0 0 Ve
Vir=10 cosy, siny, |1V,
V, 0 —siny, cosy, ||V
{V} = [C‘I’y ]{Vﬁ}
Hence,

(vh=[e, vy =L, el - TaTediv) @
vy=[c,, [c]lc. v} 4.19)
Let[C,]=[cy, |[Gs][C]
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FIGURE 4.13 Rotation about X-axis.
By substituting the values,
1 0 0 qu + CZZ Cy 0
[C},]: 0  cosy, siny, -C, JCi+C: 0
0 —siny, cosy, 0 0 1
CX 0 CZ
JC2+C? JC2+C?
0 1 0
o, G
JC+C? JCi+C?
C, C, C:
[Cy] _| =C.Cycosy, —C:siny, COSW)-\/CXZTC}Z —C.Cycosy, +C,siny,
Jei+c? Jei+e?
C.C,siny, —C_ siny, siny,JC2+C2 C,C. siny, —C,cosVy,
Jei+c : Jei+c?

[C,] is called as the rotation matrix, which is expressed in terms if direction cosines.
It also defines the position of x, or the longitudinal axis of the member in the local
axes system with 6, in relation to the reference axes system and through the y angle.
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4.7 Z-Y-X TRANSFORMATION

In this transformation, rotate about the Z-axis first, then about the Y-axis and finally
about the X-axis. Here, one can get the y, angle. As shown in Figure 4.14, the local
axes system is (X, ¥,,» Z,,) and the global axes system is (X-Y-Z).

When rotated about the Z-axis by an angle of 0 degrees, the Z and Z, axes will
remain same. X and Y will shift to X, and Y, respectively. In the second step,
rotation about the Y-axis by an angle of o degrees, will leave Y, and Y, axes the
same. X, and Z, will shift to X, and Z, respectively. In the final step, by rotating
about the X-axis by an angle of y,, X, and x,, will remain the same. But, Y, and
Z, will shift to y,, and z,, respectively. Thus, y, is measured from Y, to y,, or Z,
to z,,.

Hence, the rotation matrix can be directly written as follows:

1 0 0

[sz]: 0 cosy, siny,
0 —siny, cosy,

We can also write,

[c.]=[c,. ][C.][C] @.20)
cosOcosA sinBcosA sinA
[Cz]z (—sinBcosy,) — (cosBsinAsiny.) (cosBcosy,)—(sinBsinAsiny.) cosAsiny,
(sin®siny,) — (cosOsinAcosy.) (—cosOsiny,)—(sinOsinAcosy.) cosicosy,

\YG:YA

2\. S) Y e
Ym Li Cx 7

\ [ I A Xms XA
7 “\\\ 4 X7 // "
S T WA S

Z, Zg Zm

FIGURE 4.14 X-Y-Z transformation.
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From the figure,
sin® = S
JCi+C
cosf=—F———
JCi +C;
sinA=C,
cosA =4/C; +C;
By substituting the previously mentioned values in C,,
C, C, C.
|:C7 _ (_Cxcz sin Wz) B (Cy cos \Vz) (_Cycz sin Wz) B (Cx cos \Vz) sin V:
) N e N Je+c?
(_Csz cos ‘"Vz) B (C} sin Wz) (_Cycz COs Wz) B (Cv sin \Vz) cosy,
Je+c? Jei+c? Jei+c?

In general, one can use either Y-Z-X transformation or Z-Y-X transformation to
transform the reference axes system to the local axes system. But, choice of transfor-
mation order can make the evaluation of the y angle, simpler. In both the transforma-
tions, the rotation in the last step takes place about the X-axis only. Most importantly,
in both the transformations, y angles are calculated. But, y, and y, are completely
different. Thus, for a given member, which transformation order is to be followed?
If the member is positioned in the frame of reference axes, such that the longitudi-
nal axes of the member corresponds to Y-axis of the reference system, then use the
Z-Y-X transformation. Similarly, if a member is placed in the frame of the reference
axes system, such that the longitudinal axes of the member corresponds to Z-axis of
the reference system, then use Y-Z-X transformation.

4.8 THE ¥ ANGLE

Let us consider a three-axes system (X-Y-Z), as shown in Figure 4.15. The local
axes system is (X,,-y,-Z,). The transformed axes system is (X;, Y, Zy). The line
of sight is along the X-axis. The longitudinal axis of the member coincides with
the X-axis. Thus, this is the Y-Z-X transformation. The axes are then marked on
the cross-section of the member seen from the line of sight. The angle v, is mea-
sured anticlockwise when viewing the cross-section of the member toward the jth
end from the kth end. So, the direction cosines define the location of the x,, axis.
y, defines the location of the minor principal axis. All parameters are geometric
dependent.
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FIGURE 4.15 Y-Z-X transformation.

Similarly, for the Z-Y-X transformation, as shown in Figure 4.16, the line of sight
is along the x,, axis. The longitudinal axis of the member coincides with the x, axis.
Here, y, is measured anticlockwise when viewing the cross-section of the member
toward the jth end from the kth end.

4.9 ANALYSIS OF SPACE FRAME

For any member, which is arbitrarily oriented in space with respect to the reference
axes system, one needs to estimate the two parameters:

1. Direction cosines
2. y angle

The important points to be noted in the analysis of space frame are as follows:

1. Three-direction cosines define the location of the longitudinal axis of the
member (X,,) axis with respect to the reference axes system.

2. The y angle defines the location of the minor principal axis.

3. All parameters of direction cosines and y angle are geometric dependent. It
actually depends on the position or orientation of the member with respect
to the reference axes system.

4. Direction cosines of each member can be readily computed, but the y angle
need to be carefully estimated.
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FIGURE 4.16 Z-Y-X transformation.

5. One can do two types of transformations or rotations: Y-Z-X and Z-Y-X
transformation. The y angle computed from both the transformations will
be different. Obviously, the rotation process enables alignment of the X-Y-Z
axes to x-y-z axes of the member.

The primary objective is to extend the knowledge of two-dimensional analysis to
three-dimensional analysis. Consider a fixed beam element arbitrarily oriented with
two nodes ‘j” and ‘k’. The member is designated as ‘I’, as shown in Figure 4.17. Each
node will have three translations and three rotational degrees-of-freedom. The beam

Sc/IITM

L (ii) Reference axes system

(i) Local axes system

FIGURE 4.17 Local and reference axes system.



176 Advanced Structural Analysis with MATLAB®

element will have twelve degrees-of-freedom, making the stiffness matrix of size
12x 12, unlike two-dimensional analysis.

It is assumed that the orientation of the local axes system with respect to the refer-
ence axes system can be described in terms of the direction cosines C,,C,,C, and the
y angle. We already know that,

o XX,
x L,-
c, ==l
y Li

L=y-x) (h-n) (22

The set of translations at the jth end measured in the local axes system can be con-
nected to the reference axes system as follows:

Ry Gy Cp Cp Sz
8, =|Cy Cypn Cyul|ib,
6r . C3 1 C32 C33 8r

l i

It can be seen that the previous equation gives the translation in the jth end. Similarly,
the set of rotations measured at the jth end can be translated from the local axes to
the reference axes system as follows:

0, Cy Cp, Cis 61
en = C21 sz C23 en
9p ; Gy Cxy Cs3 ep ;
Similarly, for the kth end,

d, _C 11 Cp Cis ] Sh

s = Cx Cy Cy; 53
3, ; _C31 Cs, Cs | |dn ;
9m _Cll C12 Cl3 ] ém

o f =| Ca Cy Cy; 90
eq ; _C31 Cxy Cs3 9q
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By combining all twelve degrees-of-freedom,

8| [C, C,a Cs O 0O 0 0 0 0O O 0 O %
8| € CnCy 00 0 0 0 0 0 0 0|
8| [Cy Ch C3 O O 0 0O O O O O O [|%
0, 0 0 0 C,Cr Cy 0O 0 0 0 0 0|9
0, 0 0 0 C,yCy Cz 0O 0 0 0 0 0 []6,
0,l_ |0 0 0 C,CCiy O 0 0 0 0 016,
(10 0 0 0 0 0 CyCyCs 0 0 0],
5, 000 0 0 0 0 G CnCy 0 0 015
5, 00 0 0 0 0CyyCyCyy 0 0 01|5
0, 0 000 0 0 0 0 Cy Cu Cullg”
0, 000 0 0 0 0 0 0 0 CyCpCyllg
6, [0 0 0 0 0 0 0 0 0 CyCyCollg

q

Thus, {S(S)},- =[T,~“)]{8(”}_ @21

where,
(] 101 [0 [0]
7]~ o] [¢] (o1 (0]
’ o1 [¢] 0]
o1 o1 o1 [G]],.,
This is the transformation matrix in three-dimensional space. This transformation

matrix also has some special properties similar to those of the transformation matrix
in two-dimensional space.

[T@I - [Tml'l 4.22)
Hence, [C/] =[C)]" (4.23)

Therefore,
[3]=[7T {6 @24

Where, [C] is the rotation matrix, whose elements are the direction cosines. Thus,
C, can be used for Y-Z-X transformation and C, for Z-Y-X transformation, which
contains the direction cosines and y angle.

In addition, the following equations used in two-dimensional analysis are also
valid for three-dimensional analysis.

{m}, =[7],{m},

(&) =[] [ ][]
[KuJ{Ad) =11},

(], =[] [T){3}+{rEM},

4.25)
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Example problems with computer program

EXAMPLE 4.1:

Determine the y angle for the members of space frame shown in Figure 4.18.

SOLUTION:

Mark the global axis and local axes for all the members.

Member )i k Length (m)
1 1 2 4
2 3 2 4

2 4 6.402

Member 1:

The x,, axis of member 1 is toward the Y-axis. Therefore, we should use Z-Y-X
transformation.
Here, y angle=y,=angle between y,, and Y-axis=90 degrees

Member 2:

The x,, axis of member 2 is toward the X-axis. Therefore, we can use either
Y-Z-X or Z-Y-X transformation.

Let us use Y-Z-X transformation.

Here, y angle =y, =angle between y,, and Y-axis=90 degrees

Member 3:

The x,, axis of member 2 is not aligned toward X, Y and Z but it is inclined. Let
us try the Y-Z-X transformation.

To understand this transformation, let us consider a simple example. Consider
a vector that is placed arbitrarily in the space, as shown in Figure 4.19. Let

B ] f _

sc/lITM

3m

AN

.......

TITRRA
| 4m l
I 1

FIGURE 4.18 Space frame example.
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FIGURE 4.19 Transformation.

us consider a point ‘p in the x,-y,, plane in the frame of X-Y-Z, but the point
should not be located along the x,, axis. The point is projected on other planes.
The coordinates of this point will describe the position of X,, Y,, Z, with
respect to the reference axes.

For the Y-Z-X transformation, we already know that,

Cy C,

Xpp] [VEHC ¢ o Jora ° Jorc

)?P
Yo p=| -C, Jei+C2 oo 0 1 0 Y,
Z, 0 0 .G C, Z,

.z 0 X
JCE+C? {JC2+C?

Xpp < < c X,
Y, sy Jcz+c? ¢ \ly
B (T TS xTlz T=——= N
JC2 + 2 JC2+CE |

Zgp p

G 0 G

JC2 +C? JC2 +C?

The coordinates of the point ‘p’ on the (x,,y,,) plane can be written as Y, Z,.
Thus,

siny, = 722'3’3 -
\Zp + Ve

Yoo

cosy, = ——"2
' \/Z§p+yﬁ2i3
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So, the coordinates of point ‘p” with respect to the reference axes system should
be P(4,4,0). Similarly, the coordinates of point ‘p” with respect to the jth end of the
member of 3 is P(0,0, —3). Thus, the position vector is given by,

X, 0
V=10
o -3

Now, the coordinates of the jth end with respect to X-Y-Z axes system are (4,4,3).
Similarly, the coordinates of the kth end with respect to the X-Y-Z system are
(0,0,0).

1. Direction cosines:

C, :M:ﬂ:_o_625
L; 6.402
Yo-Y, 0-
C, =+ _0=4 _ 5625
L; 6.402
C, = M _ g =-0.469
L; 6.402
2.y angle:
Now,
Xpp = CX, +C,Y, +C,Z, = 0+0+(0.469 x 3) = 1.407
o = -C,C, %, +JCTaCIT, - G,C, 7, 2040- ~(-0.625)(-0.469)(-3) _ . |«
Jci+c? Jei+c? J0.6252 +0.4292
C. o [ (~0.625)(-3)
Zg, = — X, + Z,=0+ =+2.40
oo T o T Joe25 10429
~ Zp
siny, =—="__ =0.905
' \/ng + Y
Yoo
cosy, = ————=0.424
Lz
Thus,
v, =tan’' 0905 _ ¢4 897°4180° = 244.897°
0.424
EXAMPLE 4.2:

Determine the y angle for the members of the space frame shown in Figure 4.20.

SoLuTion:
Mark the global axis and local axes for all the members.
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FIGURE 4.20 Space frame example.

1. Coordinates of joints:

Joint X Y VA
A 0 0 0
B 3 0 0
C 3 0 -3
D 3 -3 -3
2.y angle:
Direction
Joint Cosines
Length Type of v Angle
Member (m) j kK ¢ C C Transformation  (degrees)
AB 3 A B 0 0 Y-Z-X y,=0
BC 3 B C 0 -1 Y-Z-X y,=0
CD 3 D C 1 0 Z-Y-X y,=90

181
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Member 1: Inclination angles of x,, with X, Y, Z are (0,90,90) degrees.

Member 2: Inclination angles of x,, with X, Y, Z are (90,90,0) degrees.

Member 3: Inclination angles of x,, with X, Y, Z are (90,0,90) degrees.
EXAMPLE 4.3:

Analyze the three-dimensional space frame, as shown in Figure 4.21, using the
stiffness method of analysis.

SoLuTioN:

Mark the local and reference axes system.

1. Coordinates of joints:

A 0 0
B 3 0
C 3 0 -3
D 3 -3 =3

FIGURE 4.21 Space frame example.
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2. y angle:
Direction
Joint Cosines

Length Type of y Angle
Member (m) j k C, C, C, Transformation (degrees)
AB 3 A B 1 0 0 Y-Z-X W, = 0
BC 3 B C 0 0 -1 Y-Z-X W, = 0
cD 3 D C 0 1 0 Z-Y-X W, =90

3 Marking unrestrained and restrained degrees-of-freedom:
The unrestrained and restrained degrees-of-freedom are shown in Figure 4.22.

Restrained degrees-of—freedom: 12 (&3, 514, 815, 616, 61 7, 613, 8|9, Szo, 821, 622, 623, 624)

4. Estimation of transformation matrix:
We already know that,

C1 1 C1 2 C1 3
C= C21 CZZ CZ}
C31 C32 C33

FIGURE 4.22 Unrestrained and restrained degrees-of-freedom.
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The direction cosine matrices for all the three members are,

1 0 O 0o 0 -1 0O 1 O
G=|/0 1 0|, G=/0 1 0| G=/0 0 1
0O 0 1 1 0 O 1 0 O

Now, the transformation matrix is given by,

[G] 101 [0 (o]

o [G] 10 [0l
-l o e

o [ [G] ol

[r [ o [G]],,

Global labels:

AB=[13, 14, 15,16, 17,18, 1, 2, 3, 4, 5, 6]
BC=I1,2,3,4,56,7 8,9, 10, 11, 12]
CD=119, 20, 21, 22, 23, 24, 7,8, 9, 10, 11, 12]

5. Fixed end moments and joint load vector:
Load is acting only on the member AB. Hence, the fixed end moments
along the other two members remains zero.

0
30

(FEM) , =

=15

The joint load vector is the reversal of the fixed end moments. The trans-
pose of the joint load vector is given as follows:

[)]={030000150000000-30000-1500000 0}
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6. Stiffness matrix:

[0.083 0 0 0 0 0 -0.083 0 0 0 0 0
0 0444 0 0 0 0667 0 -0444 0 0 0 0667
0 0 0444 0 -0.667 O 0 0 0444 0 0667 0
0 0 0 008 0 0 0 0 0 -0.083 0 0
0 0 -0667 0 1333 0 0 0 0667 0 0667 0
[Ku]=E 0 0667 0 0 0 1333 0 -0667 O 0 0 0.667
-0.083 0 0 0 0 0 -0.083 0 0 0 0 0
0 -0.444 0 0 0 -0667 0 0444 0 0 0 -0.667
0 0 -0444 0 0667 0 0 0 0444 0 0667 0
0 0 0 -0083 0 0 0 0 0 008 0 0
0 0 -0667 0 0667 0 0 0 0667 0 1333 0
0 0667 0 0 0 0667 0 -0.667 0 0 0 1333
[0.083 0 0 0 0 0 -0.083 0 0 0 0 0 ]
0 0444 0 0 0 0667 0 -0444 0 0 0 0667
0 0 0444 0 -0667 O 0 0 0444 0 0667 0
0 0 0 008 0 0 0 0 0 -0.083 0 0
0 0 -0667 0 1333 0 0 0 0667 0 0667 0
[I?AR] _g| 0 0667 0 0 0 1333 0 -0.667 O 0 0 0667
-0.083 0 0 0 0 0 -0.083 0 0 0 0 0
0 -0444 0 0 0 -0667 0 0444 O 0 0 -0.667
0 0 -0444 0 0667 0 0 0 0444 0 0667 0
0 0 0 -0083 0 0 0 0 0 008 0 0
0 0 -0667 0 0667 0 0 0 0667 0 1333 0
| 0 0667 0 0 0 0667 0 -0.667 0 0 0 1333 ]
[Ksc]=[Kas]
[0.444 0 0 0 -0667 0 -0.444 O 0 0 -0667 0 ]
0 0444 0 0667 O 0 0 -0.444 0 0667 O 0
0 0 008 0 0 0 0 0 -0.083 0 0 0
0 0667 0 1333 0 0 0 -0667 0 0667 0 0
-0.667 0 0 0 1333 0 0667 O 0 0 0667 0
[/? ]=E/ 0 0 0 0 0 008 0 0 0 0 0 -0.083
be -0.444 0 0 0 0667 0 0444 O 0 0 0.667 0
0 -0444 0 -0.667 O 0 0 0444 0 -0.667 0 0
0 0 -0.083 0 0 0 0 0 008 0 0 0
0 0667 0 0667 0 0 0 -0667 0 1333 0 0
-0.667 0 0 0 0667 0 0667 0 0 0 1333 0
0 0 0 0 0 -0.083 0 0 0 0 0  0.083
[Ken] = [Kas]
[0.444 0 0 0 0 -0.667 -0.444 0 0 0 0 -0.667]
0 008 0 0 0 0 0 -0.083 0 0 0 0
0 0  0.444 0.667 0 0 0 0 -0.444 0.667 0 0
0 0 0667 1333 0 0 0 0 -0.667 0.667 0 0
0 0 0 0 008 0 0 0 0 0 -008 0
[/? ]:E/ -0.667 0 0 0 0 1333 0.667 0 0 0 0  0.667
b —0.444 0 0 0 0 0.667 0.444 0 0 0 0  0.667
0 -0.083 0 0 0 0 0 008 0 0 0 0
0 0 -0.444 -0.667 0 0 0 0  0.444 -0.667 0O 0
0 0 0667 0.667 0 0 0 0 -0.667 1333 0 0
0 0 0 0 -0.083 0 0 0 0 0 008 0
-0.667 0 0 0 0 0.667 0.667 0 0 0 0 1333 |

The total stiffness matrix can be formed by assembling the global stiffness matrices
of all the members, from which the unrestrained stiffness matrix can be partitioned.
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(0528 0 0 0 -0667 0 -0444 0 0 0 -0667 0
0 0889 0 0667 0 -0667 0 -0.444 0 0667 0 0
0 0 0528 0 0667 0 0 0 -0083 0 0 0
0 0667 0 1417 0 0 0 -0667 0 0667 0 0
0667 0 0667 0 2667 0 0667 0 0 0 0667 0
[Ko]= ¢ 0 -0667 0 0 0 1417 0 0 0 0 0 -0.833
wl=H 0444 0 0 0 0667 0 0889 0 0 0 0.667 0.667
0 -0444 0 —0.667 O 0 0 0528 0 -0667 0 0
0 0 -0083 0 0 0 0 0 0528 -0.667 0 0
0 0667 0 0667 0 0 0 -0.667 -0.667 2.667 0 0
~0.667 0 0 0 0667 0 0667 0 0 0 1417 0
0 0 0 0 0 -0.083 0.667 0 0 0 0 1417
7. Calculation of end moments and reactions:
-0.045 -0.045 0.045
55.725 -4.275 4.275
-1.543 -1.543 1.543
-2.820 -2.820 -5.374
4.346 -0.284 0.420
g =) 73220 [0 | 3807
Y7 0045 (7 VY T 0045 [0 VT 20,045
4.275 4.275 -4.275
1.543 1.543 -1.543
2.820 -10.004 10.004
0.284 0.420 -0.420
3.943 3.943 -3.943
4275
-10.004
0.045 -4.275
0 JITM
SC
3.943 Sl 10.004
1293 N s -3.943
' —1.543 —0.045
4.275
024N
3.807

FIGURE 4.23

Member end reactions and moments.

1.543

9/ 5374
5 0.045
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FIGURE 4.24 Final end reactions and moments.

The member end reactions and moments are shown in Figure 4.23 and the final
end moments and reactions are shown in Figure 4.24.

MATLAB program:

%% 3D analysis of space frame

clc;

clear;

%% Input

n = 3; % number of members

EI = [1 1 1]; $Flexural rigidity

EIy = EI;

EIz = EI;

GI = [0.25 0.25 0.25].*EI; %$Torsional constant
EA = [0.25 0.25 0.25].*EI; %$Axial rigidity

L = [3 3 3]; % length in m

nj = n+l; % Number of Joints

codm = [0 0 O; 3 0 0; 3 0 -3; 3 -3 -3]; %Coordinate wrt X,Y.Z:
size=nj,3

dc = [1 0 0; 00 -1; 01 0]; % Direction cosines for each
member
tytr = [1 1 2]; % Type of transformation fo each member

psi = [0 0 90]; % Psi angle in degrees for each member
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% C matrix

cl =[100; 01 0; 00 1]; % C matrix for member 1
c2 = [00 -1; 01 0; 1 0 O0]; % C matrix for member 2
c3 = [010; 001; 1 0O0]; % C matrix for member 3

uu = 12; % Number of unrestrained Degrees-of-freedom

ur = 12; % Number of restrained Degrees-of-freedom

uul = [1 2 34 56 7 8 9 10 11 12]; % global labels of
unrestrained dof

url = [13 14 15 16 17 18 19 20 21 22 23 24]; % global labels
of restrained dof

11 = [13 14 15 16 17 18 1 2 3 4 5 6]; % Global labels for member 1
12 = [1 23 456 78 9 10 11 12]; % Global labels for member 2
13 = [19 20 21 22 23 24 7 8 9 10 11 12]; % Global labels for
member 3

1= [11; 12; 13];

dof = uu + ur; % Degrees-of-freedom

Ktotal = zeros (dof);

feml= [0; 30; 0; 0; 0O; 15; 0; 30; 0; 0; 0; -15]; % Local Fixed
end moments of member 1

fem2= [0; O0; 0; 0; O; 0; 0O; O0; 0; 0; 0O; 0]; % Local Fixed end
moments of member 2

fem3= [0; O0; 0; 0; O; 0; 0; O0; 0; 0; 0O; 0]; % Local Fixed end
moments of member 3

o

% Transformation matrix
Tl = zeros (12) ;
T2 = zeros (12) ;
T3 = zeros(12);
for i = 1:3
for j = 1:3
T1(i,j)=cl(i,3);
T1(i+3,j+3)=cl(i,]);
T1(i+6,j+6)=cl(i,]);
T1(i+9,j+9)=cl(i,]);
T2(i,j)=c2(i,3);
T2 (i+43,j+3)=c2(i,]);
T2 (i+6,j+6)=c2(i,]);
T2 (i+9,3+9)=c2(i,3);
T3(i,j)=c3(1,3);
T3 (i+43,3+3)=c3(1,3);
T3 (i+6,j+6)=c3(1,7);
T3 (1i+9,3+9)=c3(1,7);
end
end
%% Getting Type of transformation and Psi angle
for 1 = 1:n
if tytr(i) ==1
fprintf ('Member Number =');
disp (1) ;
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fprintf ('Type of transformation is Y-Z-X \n');

else
fprintf ('Member Number =');
disp (1) ;

fprintf ('Type of transformation is Z-Y-X \n');

end
fprintf ('Psi angle=');
disp (psi(i));

end

%% Stiffness coefficients for each member
EA./L;

sc2 = 6*EIz./(L."2);

sc3 = 6*EIy./(L."2);

sc4d = GI./L;

sc5 = 2*%EIy./L;

sc6 = 12*EIz./(L."3);

sc7 = 12*EIy./(L."3);

sc8 = 2*EIz./L;

n
Q
=
Il

o9

%% stiffness matrix 6 by 6
for i = 1:n
Knew = zeros (dof) ;
k1l = [scl(i); 0O; 0; 0; 0; 0; -scl(i); 0; 0; O;
k2 = [0; sc6(i); 0; 0; 0; sc2(i); 0; -sc6(i);
sc2(i)];

k3 = [0; 0; sc7(i); 0; -sc3(i); 0; 0; 0; -sc7(i);

-sc3(i); 0];
k4 = [0; 0; 0; sc4(i); 0; 0; 0; 0; 0; -sc4(i);

01;
0;

0;

0l;

k5 = [0; 0; -sc3(i); 0; (2*sc5(i)); 0; 0; 0; sc3(i);

sc5(1i); 0];

k6 = [0; sc2(i); 0; 0; 0; (2*sc8(i)); 0; -sc2(i);
0; sc8(i)];

k7 = -k1;

k8 = -k2;

k9 = -k3;

k10 = -k4;

k11 = [0; 0; -sc3(i); 0; sc5(i); 0; 0; 0; sc3(i);

(2*sc5(i)); 0];
k12 = [0; sc2(i); 0; 0; 0; sc8(i); 0; -sc2(i);
(2*sc8(1))1;
K = [kl k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12];
fprintf ('Member Number =');

disp (i);
fprintf ('Local Stiffness matrix of member, [K]
disp (K);
if 1 == 1
T = T1;
elseif i == 2
T = T2;

else

0;

0;

0;

189

0;

\n');



190 Advanced Structural Analysis with MATLAB®

T = T3;
end
Ttr = T';
Kg = Ttr*K*T;
fprintf ('Transformation matrix, [T] = \n');
disp (T);
fprintf ('Global Matrix, [K globall = \n');
disp (Kg);

for p = 1:12
for g = 1:12
Knew((1(i,p)), (1(i,9))) =Kg(p,q);

end
end
Ktotal = Ktotal + Knew;
if 1 ==
Ttl= T;
Kgl=Kg;
fembarl= Ttl'*feml;
elseif 1 ==
T2 = T;
Kg2 = Kg;
fembar2= Tt2'*fem2;
else
T3 = T;
Kg3 = Kg;
fembar3= Tt3'*fem3;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] = \n');
disp (Ktotal) ;
Kunr = zeros(12);

for x=1:uu

for y=1:uu

Kunr (x,y)= Ktotal (x,Vy) ;

end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu] = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

jl= [0; -30; 0; O0; 0; 15; 0; 0; 0O; 0; 0O0; 0O; 0; -30; 0; 0; O;
15; 0; 0; 0; 0; 0; 0]; % values given in kN or kNm

jlu = j1(1:12,1); % load vector in unrestrained dof

delu = Kuulnv*jlu;

fprintf ('Joint Load vector, [Jl] = \n');

disp (31);

fprintf ('Unrestrained displacements, [DelU] = \n');

disp (delu);

(-
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delr
del
del

= [0; 0; 0; O; O; O; 0O; 0; O; O; O; O];

zeros (dof,1);
[delu; delr];

deli= zeros (12,1);

for i = 1:n
for p = 1:12
deli(p,1l) = del((1(i,p)),1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+fembarl;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix
disp (delbarl) ;
fprintf ('Global End moment matrix
disp (mbarl) ;
elseif i ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix
disp (delbar2) ;
fprintf ('Global End moment matrix
disp (mbar2) ;
else
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fembar3;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix
disp (delbar3) ;
fprintf ('Global End moment matrix
disp (mbar3) ;
end
end
%% check
mbar = [mbarl'; mbar2'; mbar3'];
jf = zeros(dof,1);

for a=1:n
for b=1:12 % size of k matrix

d =
jfn
jfn
jf=

end

end

fprintf ('

disp

(3E) ;

1(a,b);

ew = zeros(dof,1);
ew(d, 1) =mbar(a,b) ;
jf+jfnew;

Joint forces = \n');

[DeltaBar]

[MBar]

[DeltaBar]

[MBar]

[DeltaBar]

[MBar]
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=\n');

\n');

=\n');

\n');

=\n');

\n');
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EXAMPLE 4.4:

Analyze the three-dimensional space frame, as shown in Figure 4.25, using the
stiffness method of analysis.

SoLuTioN:
Mark the local and reference axes system, as shown in Figure 4.26.

1. Coordinates of joints:

Joint X Y V4
A 0 6 0
B 4 6 0
C 7 6 0
D 0 0 0
E 4 0 0
F 7 0 0

QA B CE
ﬁ SC/ITM E

El, = EL, = EI
6 2= Bly
m 20 KN/m _El
Gl =
4
gL =2
47y
aD SC/IITM

L 4m N 3m N
|l ™ -

FIGURE 4.25 Space frame example.
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Zmg Y Zm
l jJ’m
Xm %, SC/IITM E
] B |
20 kN/m
zZ
A
an['l Ym x
Zm
1 Ym Ym
A i
3 Xm Zm X SC/ITM FE > X
-1 D E E
A
“
“

FIGURE 4.26 Local and reference axes system.

2.y angle:
Direction
Joint Cosines

Length Type of y Angle
Member (m) Ji k C, (o8 C, Transformation (degrees)
AB 4 A B 1 0 0 Y-Z-X vy, =0
BC 3 B C 1 0 0 Y-Z-X v, =0
DE 4 D E 1 0 0 Y-Z-X y,=0
EF 3 E F 1 0 0 Y-Z-X y,=0
EB 6 E B 0 1 0 Z-Y-X y,=90

3. Marking unrestrained and restrained degrees-of-freedom:

The unrestrained and restrained degrees-of-freedom are marked, as
shown in Figure 4.27.

611/é12)

Unrestrained degrees-of-freedom: 12 (8, 8,,8;, 04,05, 65,8;,85, 89, 610,
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85 83 821
) 5 1
O1g " O ? 021 y 0
017 05 23
5, SC/IITM 810
iA 016 A 22
837 833
é.
03 26 91 635 32
629 635
8,SC/IITM F 831

ﬁ D bag 4m

FIGURE 4.27 Unrestrained and restrained degrees-of-freedom.

Restrained degrees-of-freedom:

24 (813/314/815/616/6]7/618/819/820/821/622/623/624)
(825182618271 628/629/63018311832/ S33/634/ 635/636)
4. Estimation of transformation matrix:

We already know that,

CH C]Z C13
C=|Cn Cn Cy
C31 C32 C33

The direction cosine matrices for all the three members are,

1 0 O o 1 O
CAB =0 1 0 /CEB =10 0 1
0O 0 1 1T 0 O

CAB = CBC = CDE = CEF
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Now, the transformation matrix is given by,

[G] o1 (o]
[ [G] ol
R
o [0 [G]
[0 [0 ol

Global labels:

3,14,15,16,17,18, 1,2, 3, 4, 5, 6]

AB=[1
BC=11,2,3,4,5,6, 19,20, 21, 22, 23,
DE=1[25, 26, 27, 28, 29, 30, 7, 8, 9, 10, 11, 12]
EF=17,8,9, 10, 11, 12, 31, 32, 33, 34, 35, 36]

EB=(7,8,9,610,11,12,1,2,3,4,5, 6]

24]

5. Fixed end moments and joint load vector:

Load is acting only on the member EB. Hence, the fixed end moments
along the other two members remains zero.

Member EB:

Va

206
2

=60kN

Vi =60kN

20x6°

MEB =

=60kNm

MBE = 60kNm

(FEM),, =

0
0
60
-60
0
0
0
0
60
60

195



The joint load vector is the reversal of the fixed end moments. The trans-
pose of the joint load vector is given as follows:

196
[1] =fo o
6. Stiffness matrix:
®
[ 0.063 0 0
0 0.188 0
0 0 0.188
0 0 0
0 0 -0.375
[KAB] — 0 0.375 0
-0.063 0 0
0 0-0.188 0
0 0 -0.188
0 0 0
0 0 -0.375
| o 0375 0
1 2 3
[0.083 0 0
0 0.444
0 0 0.444
0 0 0
0 0 -0.667
0 0.667 0
[Koc] =1
—-0.083 0 0
0 -0.444 0
0 0 -0.444
0 0 0
0 0 -0.667
| o 0.667 0
o) @
[0.083 0 0
0 0.444 0
0 0 0.444
0 0 0
0 0 —0.667
[KDE] _n 0 0.667 0
-0.083 0
0 -0.444 0
0 0 —0.444
0 0 0
0 0 -0.667
| o 0.667 0

-60

®

o
=}
2 ooo
&

|
o
oo oo o oo

I
Y

S oo o (&

=}
*
@

|
o
o 0o oo oo

60

®

|
o

“wooo-o0okL oo

<}
° 3
@

o
]

~
[

0

o (3

o
~
«

|
=]
oc oo wo =0 oo

~
o

20 ®

=3
o
N

Lo oo

w
@

|
=}

oo oax o
=
3

o
o
>
N

0

-0.063

o o

oo oo

=}
=N
ot}

o oo oo

-0.083

o o

2o o o

=}
=3}
&

oo ooco

0 -60
2 3
0 0
0188 0
0 -0.188
0
0375
0375 0
0 0
0.88 0
0 0.188
0 0
0 0375
0375 0

0 0
-0.444 0
0 —0.444
0 0
0 0.667
-0.667 0
0 0
0.444 0
0 0.444
0 0
0 0.667
-0.667 0
8 9
0 0
—0.444 0
0 -0.444
0 0
0.667
-0.667 0
0 0
0.444 0
0 0.444
0 0
0 0.667
-0.667 0

-60

o~
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o
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[EDE] = [KDE]

7 8 9 10 i 12 (DICP) 63 69 69
[ 0.083 0 0 0 0 0 -0.083 0 0 0 0 o 1
0 0.444 0 0 0 0.667 0 -0.444 0 0 0 0.667 | (8
0 0 0.444 0 0-0.667 0 0 0 ~0.444 0 ~0.667 0 9
0 0 0 0.083 0 0 0 0 0 -0.083 0 0 10
0 0 ~0.667 0 1.333 0 0 0 0.667 0 0.667 0 11
0 0.667 0 0 0 1.333 0 -0.667 0 0 0 0.667 | 12
[Kee]=E1
-0.083 0 0 0 0 0 0.083 0 0 0 0 0 |6)
0 ~0.444 0 0 0 ~0.667 0 0.444 0 0 0 -0.667 | (32)
0 0 ~0.444 0 0.667 0 0 0 0.444 0 0.667 o 1@
0 0 0 -0.083 0 0 0 0 0 0.083 0 0 1@
0 0 ~0.667 0 0.667 0 0 0 0.667 0 1.333 0 |6
| 0 0.667 0 0 0 0.667 0 -0.667 0 0 0 1.333 | Go
[ Ker ] = [Ker]
7 8 9 10 11 12 1 2 3 4 5 6
[ 0.083 0 0 0 0 0 -0.083 0 0 0 [
0 0.444 0 0 0 0.667 | 0 ~0.444 0 0 0.667 | (8
0 0.444 0 0-0.667 0o ! 0 ~0.444 0 ~0.667 0 9
0 0 0 0.083 0 0o . 0 0 0 -0.083 0 0 10
0 -0.667 0 1.333 0 0 0.667 0 0.667 0 11
0 0.667 0 0 0 1333 1 0 -0.667 0 0 0 0.667 |12
Kel=fh 5085 "0 0 0o o 0 | 008 0o o [ oo |1
0 -0.444 0 0 0 —0.667 1 0 0.444 0 0 0 -0.667 | (2
0 0 ~0.444 0 0.667 0 0 0 0.444 0 0.667 0 3
0 0 0 -0.083 0 0o . 0 0 0 0.083 0 0 4
0 0 -0.667 0 0.667 0o ! 0 0 0.667 0 1.333 0 5
Y 0.667 0 0 0 0.667 0 -0.667 0 0 0 1333 | (6
[Kes | = [Kes]
The total stiffness matrix can be formed by assembling the global stiff-
ness matrices of all the members, from which the unrestrained stiffness
matrix can be partitioned.
1 2 3 4 5 6 7 8 9 10 11 12
[0.188 0 0 0 0 0 -0.042 0 0 0 0 0 1
0 0.688 0 0 0 01251 0 -0.056 0 0 ~0.167 | (2
0 0 0.688 0 -0.125 0o . 0 0 -0.056 0 0.167 0 3
0 0 0 0.188 0 0o . 0 0 0 -0.042 0 0 4
0 0 -0.125 0 3 0 0 0 -0.167 0 0.333 0 5
(o] -2 0125 0 0 0 3 i 0 0167 0 0 0 03350
~0.042 0 0 0 0 0 | 0.188 0 0 0 0 0 7
0 -0.056 0 0 0 0.167 1 0 0.688 0 0 0 0.458 | (8
0 0 -0.056 0 -0.167 0 0 0 0.688 0 ~0.458 0 9
0 0 0 -0.042 0 0o 0 0 0 0.188 0 0 a0
0 0 0.167 0 0.333 0o . 0 0 -0.458 0 3 0 |a1
L o -0.167 0 0 0 03331 0 0.458 0 0 0 3 |az
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7. Calculation of end moments and reactions:

0 0 [0 0 0

0 0 0 0 0
21.028 -36.412 22.978 -39.582 62.560
-16.364 21.818 16.364 -21.818 38.182
-39.898 51.739 —43.564 56.183 -7.835

VA ER IR ST RS B 90 /VA T R (VA 5 B VA 5

0 0 0 0 0
-21.028 36.412 -22.978 39.582 57.440
16.364 -21.818 -16.363 21.818 —-38.182
—44.215 57.496 —-48.348 62.562 —7.524

0 0 0 0 0

The member end forces and moments are shown in Figure 4.28. The
final end moments and reactions are shown in Figure 4.29.

44.215 KNm,
39.90 kNm 238182 KN -51.739 kN, -57.496 kNi
-16.364 kNm B -38. m
A\— A\ Q 7\ -

£ ) L8 ) S 28} 7Y
A 4m B16.364 kNm 21878 kNm| B 3m €| T21.878 kNm
sc/IITM

21,028 kN 21028 kN 54.44 KN 30412 kN 36412 kN

SC/IITM

43. 48.348 kNi 7. ¥ -62.

3.56 kNm, 835 kNI E 56.183 kN; 62.562 kNI
B -21.878 kNj SC/IITM

£\ 38.18 kNm N\

o D 4m e ¥ ¥ ¥ Ve 3m F
16.36 KNm 1636 21.878 kKNm
61.56 kN
22978 kN 22978 kN 39.582 kN 39.582kN

FIGURE 4.28 Member end forces and moments.

39.90 kKNm -57.496 kN
-16.364 kNm A B

\ |
M SC/IITM c E'.zms KNm

21028 kN 36412 KN

20 kN/m

43.56 KNm, -62.562 KNi
SC/IITM 9?\

L2}
16.36 kNm FE 21878 kNm

o]

22.978 KN 39.582 kN
L 4m I 3m |
I I 1

FIGURE 4.29 Member end forces and moments.
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MATLAB® program:

)

%% 3D analysis of space frame

n = 5; % number of members
EI = [1 111 1]; $Flexural rigidity

EIy = EI;
EIz = EI;
GI = [0.25 0.25 0.25 0.25 0.25].*EI; %$Torsional constant

[eal
hd
Il

[0.25 0.25 0.25 0.25 0.25] .*EI; $Axial rigidity

L =[4 343 6]; % length inm

nj = n+l; % Number of Joints

codm = [0 6 0; 4 6 0; 7 6 0; 00 0; 4 0 0; 7 0 0]; %Coordinate
wrt X,Y.Z: size=nj,3

dc = [100; 100; 100; 100; 010]; % Direction cosines
for each member
tytr = [1 1 1 1 2];
psi = [0 0 0 0 90];

Type of transformation fo each member
Psi angle in degrees for each member

o o

% C matrix

cl =[100; 01 0; 00 1]; % C matrix for member 1
c2 = [1 00; 01 0; 00 1]; % C matrix for member 2
c3 = [100; 01 0; 00 1]; % C matrix for member 3
c4d = [1 00; 01 0; 00 1]; % C matrix for member 4
c5 = [01 0; 00 1; 10 0]; % C matrix for member 5

uu = 12; % Number of unrestrained Degrees-of-freedom
ur = 24; % Number of restrained Degrees-of-freedom

uul = [1 2 3 456 7 8 9 10 11 12]; % global labels of
unrestrained dof

url = [13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36]; % global labels of restrained dof

11 = [13 14 15 16 17 18 1 2 3 4 5 6]; % Global labels for
member 1

12 = [1 2 3 45 6 19 20 21 22 23 24]; % Global labels for
member 2

13 = [25 26 27 28 29 30 7 8 9 10 11 12]; % Global labels for
member 3

14 = [7 8 9 10 11 12 31 32 33 34 35 36]; % Global labels for
member 4

15 = [7 8 9 10 11 12 1 2 3 4 5 6]; % Global labels for member
5

1= [11; 12; 13; 14; 15];

dof = uu + ur; % Degrees-of-freedom

Ktotal = zeros (dof);

feml= [0; O; 0; 0; O; 0; 0; O0; 0; 0; 0O; 0]; % Local Fixed end
moments of member 1
fem2= [0; O0; 0; 0; O; 0; 0; O0; 0; 0; 0O; 0]; % Local Fixed end
moments of member 2
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fem3= [0; O0; 0; 0; O; 0; 0; O0; 0; 0; 0O; 0]; % Local Fixed end
moments of member 3

fem4= [0; O; 0; 0; O; 0; 0; O0; 0; 0; 0O; 0]; % Local Fixed end
moments of member 4

fem5= [0; 0; 60; 60; 0; 0; 0; 0; 60; -60; 0; 0]; % Local Fixed
end moments of member 5

o

% Transformation matrix

Tl = zeros(12);

T2 = zeros(12);

T3 = zeros(12);
)
)

7

T4 = zeros (12

T5 = zeros (12

for i = 1:3

for j = 1:3
T1(i,j)=cl(i,]);
T1(i+3,j+3)=cl(i,]);
T1(i+6,j+6)=cl(i,]);
T1(i+9,J+9)=cl(i,]);
T2(i,j)=c2(i,3);
T2 (1+3,Jj+3)=c2(1i,3);
T2 (i+6,j+6)=c2(1i,7);
T2 (1+9,J+9)=c2(1i,3);
T3(i,j)=c3(i,7);
T3 (1i+3,J+3)=c3(1i,3);
T3 (i+6,j+6)=c3(1i,7);
T3 (1+9,J+9)=c3(1i,7);
T4 (i,j)=c4(i,]);
T4 (1+3,J+3)=c4(i,3);
T4 (i+6,J+6)=c4(i,7);
T4 (1+9,J+9)=c4(1i,7);
T5(i,j)=c5(1i,3);
T5(i+3,j+3)=c5(1i,7);
T5(i+6,Jj+6)=c5(1i,7);
T5(1i+9,J+9)=c5(1,3);
end
end

7

o9

%% Getting Type of transformation and Psi angle
for i = 1:n

if tytr(i) ==

fprintf ('Member Number =');

disp (1i);

fprintf ('Type of transformation is Y-Z-X \n');
else

fprintf ('Member Number =');

disp (1i);

fprintf ('Type of transformation is Z-Y-X \n');
end

fprintf ('Psi angle="');
disp (psi(i));
end
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%% Stiffness coefficients for each member
scl = EA./L;

sc2 = 6*EIz./(L."2);

sc3 = 6*EIly./(L."2);

sc4 = GI./L;

sc5 = 2*EIly./L;

sc6 = 12*EIz./(L."3);

sc7 = 12*EIly./(L."3);

sc8 = 2*EIz./L;

%% stiffness matrix 6 by 6
for 1 = 1:n

Knew = zeros (dof) ;

k1l = [scl(i); 0; 0; 0; O; 0; -scl(i); 0; 0; 0; 0; O01;

k2 = [0; sc6(i); 0; 0; 0; sc2(i); 0; -sc6(i); 0; 0; O;
sc2(i)];

k3 = [0; 0; sc7(i); 0; -sc3(i); 0; 0; 0; -sc7(i); 0;
-sc3(1); 0];

k4 = [0; 0; O; sc4(i); O; 0; 0; O; 0; -sc4(i); 0; 01;

k5 = [0; 0; -sc3(i); 0; (2*sc5(i)); 0; 0; 0; sc3(i); 0;
sc5(i); 0];

k6 = [0; sc2(i); 0; 0; 0; (2*sc8(i)); 0; -sc2(i); 0; 0;

0; sc8(i)];
k7 = -k1;
k8 = -k2;
k9 = -k3;
k10 = -k4;

k1l = [0; 0; -sc3(i); 0; sc5(i); 0; 0; 0; sc3(i); O;
(2*¥sc5(1)); 0];

k12 = [0; sc2(i); 0; 0; 0; sc8(i); 0; -sc2(i); 0; 0; 0;
(2*sc8(1))1;

K = [kl k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12];

fprintf ('Member Number =');

disp (1);
fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);
if 1 == 1
T = T1;
elseif 1 == 2
T = T2;
else
T = T3;
end
Ttr = T';

Kg = Ttr*K*T;
fprintf ('Global Matrix, [K globall = \n');
disp (Kg);

for p = 1:12
for g = 1:12
Knew ((1(i,p)), (1(i,q))) =Kg(p,q);
end
end
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Ktotal = Ktotal + Knew;

if i == 1

Ttl= T;

Kgl=Kg;

fembarl= Ttl'*feml;
elgeif i == 2

Tt2 = H

Kg2 = Kg;

fembar2= Tt2'*fem2;
elseif i ==3

Tt3 = ;
Kg3 = Kg;
fembar3= Tt3'*fem3;
elseif 1 ==4
Tt4 = H
Kg4 = Kg;
fembard= Tt4'*fem4;
else
Tt5 = T;
Kg5 = Kg;
fembar5= Tt5'*fem5;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] = \n');
disp (Ktotal) ;
Kunr = zeros(12);

for x=1:uu

for y=1:uu

Kunr (x,y)= Ktotal (x,Vy);

end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu]l = \n');
disp (Kunr) ;
KuuInv= inv (Kunr) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;

%% Creation of joint load vector

jl= [0; 0; -60; 60; 0O; O; O0; 0; -60; -60; 0; 0; O; O0; 0; 0; O;
0; 0; 0; 0; 0; 0; O0; O; O; O0; 0; 0; O; O; O; 0; 0; 0; 0l;
values given in kN or kNm

jlu = j1(1:12,1); % load vector in unrestrained dof

delu = Kuulnv*jlu;

fprintf ('Joint Load vector, [Jl] = \n');

o0 ~

disp (j1');
fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu');

delr = [0; 0; O0; O0; 0; 0; O0; 0; 0; O; 0; 0O; O; 0; 0; 0O; 0; O;
0; 0; 0; 0; 0; 0l;

del = zeros (dof,1);

del = [delu; delr];
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deli= zeros (12,1);
for i = 1:n
for p = 1:12
deli(p,1l) = del((1(i,p)),1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+fembarl;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbarl');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
elseif 1 ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2');
elseif 1 ==
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fembar3;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar3');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar3');
elseif 1 ==
delbar4 = deli;
mbar4= (Kg4 * delbar4)+fembar4;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar4');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbard');
else
delbar5 = deli;
mbar5= (Kg5 * delbar5)+fembars;
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar5');
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar5');
end
end
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%% check
mbar = [mbarl'; mbar2'; mbar3'; mbar4'; mbar5'];
jf = zeros(dof,1);
for a=1:n
for b=1:12 % size of k matrix
d = 1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
end
fprintf ('Joint forces = \n');
disp (Ff£');



5 Analysis of Special
Members

5.1 THREE-DIMENSIONAL ANALYSIS OF TRUSS STRUCTURES

There are several general assumptions made in the two-dimensional analysis of
truss structures. Joints are assumed to be pinned connections, which is one of the
basic assumptions made in the analysis of planar frames. It is also valid for three-
dimensional truss systems. A beam element developed earlier, will be used here with
a small modification. Assume that the beam element has spherical hinges at both
ends. The consequence of this assumption is that the beam can freely rotate about
any axes. Thus, the end rotations will be zero. For the beam element in three-dimen-
sional analysis, the number of degrees-of-freedom is 12. Each end will have three
translations and three rotations. But, in this case, the beam element is restrained with
spherical hinges. Thus, the beam element will have three displacement components
at each end of the member. The truss member can resist only axial deformation and
axial forces, which makes the stiffness matrix of order 6 X 6.

Consider a typical truss member arbitrarily oriented, as shown in Figure 5.1. The
local axes system and the reference axes system for the member are marked. The
degrees-of-freedom in the local and reference axes system are also marked at both
ends of the truss member. The corresponding axial forces are mentioned in brackets.

Thus, the forces and displacement at the jth end and kth end in the local axes
system are connected using the stiffness matrix as follows:

Pl [k, O O k, O O0]fs,
P, 0 0 0 0 0 o0ffs
Pl 0O 0 0 0 0 03,
2l |k, 0 0 k, O 0|5,
P, 0 0 0 0 0 ofls,
P O 0 0 0 0 0[5,
{PT}i = [KT:L' {ST},' GRY

In the previous equation, ‘7" represents the truss element and ‘i’ represents the mem-
ber number. Now, the forces in the local axes system and the reference axes system
are connected using the transformation matrix.

205
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85 (Fy) Xm -

Sn(Pn)

Sp(Py)

8y (Ry)
Sw(Py)

SC/IITM

5.(P) sc/utm

5. (Py) x

8y (Py)

(i) Local axes system (i1) Reference axes system

Zm z

FIGURE 5.1 Local and reference axes system.

P 0 0 0 i Cn (s 5.2)

{PT }i = |:TT l’ {PT }i

The transformation matrix for the truss member can be written as follows:

[c:] 10l }

o1 [cr]

m] - [
Hence, the following equations will be valid for the truss member also.

(or} =[] 54}

(%) ~[n T [k n]

(5.3)

Further, we can also say,
{pl, =[kr ] {8r}, +{FP},
{ﬁ}i = [I;T l' {ST}I' + {Fﬁ}i

For a truss member that is arbitrarily oriented in space, one can either use Y-Z-X
transformation or Z-Y-X transformation. Therefore, all equations for both the trans-
formations derived previously for the three-dimensional beam element for obtaining
the y angle are applicable without any changes to the truss member. If the truss

(5.4)



Analysis of Special Members 207

members are loaded only at the joints (which is a common phenomenon), orientation
of the local axes of the member with respect to the reference axes of the system is
not important. In such a case, the local axes system can be positioned so that the y
angle is practically zero.

Thus,

-z 0 e S
| JC2+C? w/Cf+c§_
C, C, C,

-C, C,

Joever o

Cx Cz _C)’ CZ ' Cf + C)Z,

__ Jeieck e

5.2 SPECIAL ELEMENTS

The structural members with a varying cross-section and non-uniform moment of
inertia can be called special elements. Consider an element with one end fixed and
another end hinged, as shown in Figure 5.2. The support conditions considered here
are different from those of the standard beam element considered previously. The
special member will then be converted to the conventional member with the proce-
dure followed so far. The problem can now be converted into a fixed beam with the

2
onn SC/IITM E

153 té‘,;
) SC/IT™ PN
s LELA E™ 5%

FIGURE 5.2 Degrees-of-freedom.
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hinge introduced at one end, with a uniform moment of inertia, Young's modulus and
area of cross-section. But, there is an unrestrained degree-of-freedom at the end with

the hinge, the remaining degrees being restrained. The degrees-of-freedom are then
marked for the beam element.
Thus,

Unrestrained degrees-of-freedom=1 (6,)
Restrained degrees-of-freedom=5 (0,, 0,, d,, s, 5)

For a standard beam element, the stiffness matrix can be written as follows:

[ 4EI1 2EI 6EI 6EI
T T 2 T2 0 0
1 1 1 !
2EI 4EI 6EI 6EI
e B 2 ) 0 0
l ! ! !
6EI 6EIl 12EI 12EI
2 s a0 0
I 1 ! 1
K =
[ l‘ 6EI 6EI 12EI  12EI
S r P P 0 0
0 0 0 0 AE - _AE
! !

For this case, the stiffness matrix can be split into the following submatrices:

I:k““]lxl [k“’]bd
[K]:[Msxl MJ

where:
4EI
kuu =0
(k)=
l [ l
6EI 12E1 12EI
I P P 0 0
6El 12E1 12E1
[k”]: e 3 0 0
l l l
0 0 0 Al _Al
l l
0 0 0 —AZ—E AZE
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2EI

6E]

12
[k]=| e

:2EI 6EI 6EI
3= OF S0 o]

Now, the stiffness matrix for the special element is given by,

(K] g = (Ko )= (K ][ K] [Kor] 5.5)

By substituting the values of submatrices in the previous equation,

/ [ [
3EI 3EI 3EI
2 5 g 0
3EI 3EI 3EI
[k ]= e T e 0 0
0 0 0 AE —%

Thus, it can be seen that the stiffness method can be conveniently modified to
analyze any element with varied boundary conditions or support conditions. It
is very interesting to note that we are using the same procedure as developed

for the conventional beam element to derive the stiffness matrix of a special
element.

5.3 NON-PRISMATIC MEMBERS

Non-prismatic members are the common application in offshore structures.
Depending upon the topside requirements, there may be a possibility that the
beam moment of inertia can vary depending upon the span length. This kind
of problem can be handled using the substructure technique. We already know
that the beam element with special support conditions can be handled as a con-

ventional problem by partitioning the matrices. This is called the substructure
technique.
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Example Problem with Computer Program
EXAMPLE 5.1:
Analyze the beam shown in Figure 5.3 using the substructure technique.

SOLUTION:
1. Mark the degrees-of-freedom:

Assume a structural hinge at point ‘B’, and mark the unrestrained and
restrained degrees-of-freedom, as shown in Figure 5.4.

Unrestrained degrees-of-freedom=3

Restrained degrees-of-freedom=6

Thus, the total number of degrees-of-freedom is nine.

Global labels:

AB=1[4,1,6,2,8,3]
BC=1[1,5,2,7,3,9]

2. Stiffness matrix:

The conventional stiffness matrices for both the members can be written

as follows:

O] 1 O] 2 3
0.0047  0.0023  0.0018 -0.0018 0 0 ®
0.0023  0.0047  0.0018 -0.0018 0 0 1
(K] =F 0.0018  0.0018  0.0009  0.0009 0 0 (6)
A1 20,0018 -0.0018  -0.0009  0.0009 0 0 2
0 0 0 0 0.0469  —0.0469
0 0 0 0 -0.0469  0.0469 | (3

1 ® 2 © 6 06

0.0062  0.0031  0.0047  -0.0047 0 0 1
0.0031  0.0062  0.0047  -0.0047 0 o B
( 1_g| 00047 00047 00047  -0.0047 0 0 2
[Ksc]= ~0.0047 -0.0047 -0.0047  0.0047 0 o @
0 0 0 0 0.075 -0.075|(3
0 0 0 0 -0.075  0.075 | (9)
20 KN/m
L~
R R R R RN INE S -
A7 - -
7 |—§ C
5 L5LE, 1254  sc/utm LEA 7
™ > |
I =0.0031m*
A =0.150 m?

FIGURE 5.3 Beam example.
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20 KN/m

R R R EERRIRRNIIY!

SC/lITM

86 5, N

FIGURE 5.4 Unrestrained and restrained degrees-of-freedom.

The total stiffness matrix is developed by assembling the previous stiff-
ness matrices.

1 2 3 ®@ 6 ® @ ®

[ 0.0108 0.0029 0 0.0023 0.0031 0.0017  -0.0046 0 o U
0.0029  0.0055 0 -0.0017  0.0046  —0.0009 —0.0046 0 0 2
0 0 0.1219 0 0 0 0 -0.0469  -0.0750|(3
0.0023 -0.0017 0 0.0046 0 0.0017 0 0 0 @
[Kiw] =E| 0.0031  0.0046 0 0 0.0062 0 -0.0046 0 o |5
0.0017  -0.0009 0 0.0017 0 0.0009 0 0 o |®
—-0.0046  -0.0046 0 0 —-0.0046 0 0.0046 0 0 @
0 0 -0.0469 0 0 0 0 0.0469 0
| o 0 -0.0750 0 0 0 0 0 0.0750 J(9)
Now, the following submatrices can be written from the total stiffness
matrix.
1 2 3
0.0108  0.0029 o
[Kw]=E|0.0029  0.0055 0 |2
0 0 0.1219(3
,[107:2916  -56.4693 0
[Kuo]" = 7| 564693  210.8186 0
0 0 8.2051
0.0046 0 0.0017 0 0 o 1®
0 0.0062 0 ~0.0046 0 o |®
[k,]=£| % 0 0.0009 0 0 o |(®
7 0 -00046 0 0.0046 0 o |@
0 0 0 0 0.0469 0
0 0 0 0 0 0.0750(9)
0.0023  0.0031 0.0017  -0.0046 0 0 1
[Ku]=E|-0.0017 0.0046 —0.0009 —0.0046 0 0 2

0 0 0 0 -0.0469 -0.0750|(3
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1 2 3
[0.0023  -0.0017 o 1(®
0.0031  0.0046 o (B
(ko] =F 0.0017  —0.009 o |(e)
" -0.0046  —0.0046 o (@
0 0 ~0.0469
| 0 0 -0.0750(9)

(K] e = [Ke =[][R] [Kor]

[ 0.0030 0.0012 0.0007 -0.007 0 0

0.0012 0.0022 0.0006 —-0.006 0 0

0.0007 0.0004 0.0002  -0.0002 0 0

[K]Speda' ~1-0.0007 -0.0004 -0.0002  0.0002 0 0
0 0 0 0 0.0288  -0.0288
| 0 0 0 0 -0.0288  0.0288 |

3. Calculation of fixed end moments and joint load vector:

26.667
-26.667
40

[FEMAB] = 40

. [FEMsc]=10]

©
X

OEOPOVEV®E

4. Calculation of end moments and reactions:

(R} =[Ku (KT s}~ {1}
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55.9053 KNm 14.4698 kNm
0 A B 0
q
4m
T SC/IITM
57.5938 kN 22.4062 kN

FIGURE 5.5 Member end forces and moments.
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-14.4698 KNm -3% KNm
0 0
ERA AW
2m
SC/IITM
-22.4062 kN 22.4062 kN

L
/E -30.3426 kNm

20 kKN/m
55.9053 KNm! HHHHHHHHHHB
A.
4 SC/IITM f
57.5938 kN
L 4m L 22.4062 kKN

FIGURE 5.6 Final end forces and moments.

55.9053
14.4698
57.5938
22.4062
0
0

e ;)

—14.4698
-30.3426
-22.4062
-22.4062
0
0

The member end forces and moments are shown in Figure 5.5 and the
fixed end moments and reactions are shown in Figure 5.6.

MATLAB® program

%% stiffness matrix method for non prismatic members

n = 2; % number of members

I1 = 0.0031; %value in m4

Al = 0.15; %$value in m2

I = [1.5*I1 I1]; %Moment of inertis in m4

L = [4 2]; % length in m

A = [1.25*A1 Al]l; % Area in m2

uu = 3; % Number of unrestrained degrees of freedom
ur = 6; % Number of restrained degrees of freedom

uul = [1 2 3]; % global labels of unrestrained dof

url = [4 5 6 7 8 9]; % global labels of restrained dof
11 = [4 1 6 2 8 3]; % Global labels for member 1
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12 = [1 5 2 7 3 9]; % Global labels for member 2

1= [11; 12];

dof = uu+ur;

Ktotal = zeros (dof);

feml= [26.67 -26.67 40 40 0 0]; % Local Fixed end moments of
member 1

fem2= [0 0 0 0 0 0]; % Local Fixed end moments of member 2

%% rotation coefficients for each member
rcl = 4.*%I./L;

rc2 = 2.*%I./L;

rec3 = A./L;

%% stiffness matrix 4 by 4 (axial deformation neglected)
for i = 1:n

Knew = zeros (dof);

kl = [rcl(i); rc2(i); (rcl(i)+rc2(i))/L(i);
(- (rcl(i)+rc2(i))/L(i)); 0; 01;

k2 = [rc2(i); rcl(i); (rcl(i)+rc2(i))/L(i);
(- (rcl(i)+rc2(i))/L(i)); 0; 01;

k3 = [(rcl(i)+rc2(i))/L(i); (rcl(i)+rc2(i))/L(i);
(2% (rel (i) +rc2 (1)) /(L(1)*2)); (-2*(rcl(i)+rc2(i))/(L(1i)"2));
0; 01;

k4 = -k3;

k5 = [0; 0; 0; 0; rc3(i); -rc3(i)]1;

k6 = [0; 0; 0; 0; -rc3(i); rc3(i)l;

K = [kl k2 k3 k4 k5 ké6];

fprintf ('Member Number =');

disp (1i);

fprintf ('Local Stiffness matrix of member, [K] = \n');

disp (K);

for p = 1:6

for g = 1:6
Knew((1(i,p)), (1(i,q9))) =K(p,q);

end
end
Ktotal = Ktotal + Knew;
if 1 == 1
Kgl=K;
elseif 1 == 2
Kg2 =K;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotall = \n');

disp (Ktotal) ;

%% Kuu matrix
Kuu = zeros (uu) ;
for x=1:uu
for y=1:uu
Kuu(x,y)= Ktotal(x,y);
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end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu]l = \n');
disp (Kuu) ;
KuuInv= inv (Kuu) ;
fprintf ('Inverse of Unrestrained Stiffness sub-matrix,
[KuuInverse] = \n');
disp (Kuulnv) ;
%% Krr matrix
Krr = zeros (ur) ;
for x=(1l+uu) :dof

for y=(1l+uu) :dof

Krr ( (x-uu), (y-uu) )= Ktotal (x,Vy) ;

end
end
fprintf ('Restrained Stiffness sub-matrix, [Krr] = \n');
disp (Krr);

%% Kur matrix
Kur = zeros (uu,ur) ;
for x=1:uu
for y=(1l+uu) :dof
Kur ((x), (y-uu) )= Ktotal(x,vy);
end
end
fprintf (' [Kur] = \n');
disp (Kur) ;

%% Kru matrix
Kru = zeros (ur,uu) ;
for x=(1+uu) :dof
for y=1:uu
Kru((x-uu), (y))= Ktotal (x,vy);
end
end
fprintf (' [Kru]l = \n');
disp (Kru) ;

%% K modified

Kmod = Krr - (Kru*KuuInv*Kur) ;

fprintf ('Modified Stiffness matrix = \n');
disp (Kmod) ;

%% Creation of joint load vector

jl= [26.67; -40; 0; -26.67; 0; -40; 0; 0; 0]; % values given
in kN or kNm

jlu = [26.67; -40; 0]; % load vector in unrestrained dof

jlr = [-26.67; 0; -40; 0; 0; 0]; % load vector in restrained
dof

delu = Kuulnv*jlu;
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fprintf ('Joint Load vector, [Jl] = \n');
disp (§1');
fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu');
Rr = (Kru*KuuInv*jlu) - jlr;
fprintf ('Rr vector = \n');
disp (Rxr');
delr = [0; 0; 0; 0; 0; 0];
del = [delu; delr];
deli= zeros (6,1);
for i = 1:n
for p = 1:6
deli(p,1) = del((1(i,p)).,1) ;
end
if 1 ==
delbarl = deli;
mbarl= (Kgl * delbarl)+feml';
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar]
disp (delbarl') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbarl');
elseif i ==
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fem2';
fprintf ('Member Number =');
disp (1);
fprintf ('Global displacement matrix [DeltaBar] = \n');
disp (delbar2') ;
fprintf ('Global End moment matrix [MBar] = \n');
disp (mbar2'");
end

\n');

%% check
mbar = [mbarl'; mbar2'];
jf = zeros(dof,1);
for a=1:n
for b=1:4 % size of k matrix
d =1(a,b);
jfnew = zeros(dof,1);
jfnew(d, 1) =mbar (a,b) ;
jf=jf+jfnew;
end
end
fprintf ('Joint forces = \n');
disp (Jf');



Analysis of Special Members

MATLAB output:

Member Number = 1

Local Stiffness matrix of member, [K] =

0.0046 0.0023 0.0017 -0.
0.0023 0.0046 0.0017 -0.
0.0017 0.0017 0.0009 -0.
-0.0017 -0.0017 -0.0009 0.
0 0 0
0 0 0
Member Number = 2

Local Stiffness matrix of member, [K] =

0.0062 0.0031 0.0046 -0.
0.0031 0.0062 0.0046 -0.
0.0046 0.0046 0.0046 -0.
-0.0046 -0.0046 -0.0046 0
0 0 0
0 0 0

Stiffness Matrix of complete structure,

0.0108 0.0029 0 0.0023 0.0031
0.0029 0.0055 0 -0.0017 0.0046
0 0 0.1219 0 0
0.0023 -0.0017 0 0.0046 0
0.0031 0.0046 0 0 0.0062
0.0017 -0.0009 0 0.0017 0
-0.0046 -0.0046 0 0 -0.0046
0 0 -0.0469 0 0
0 0 -0.0750 0 0
Unrestrained Stiffness sub-matrix,
0.0108 0.0029 0
0.0029 0.0055 0
0 0 0.1219

Inverse of Unrestrained Stiffness sub-matrix,

107.2916 -56.4693 0
-56.4693 210.8186 0
0 0 8.2051
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0017 0 0
0017 0 0
0009 0 0
0009 0 0
0 0.0469 -0.0469
0 -0.0469 0.0469
0046 0 0
0046 0 0
0046 0 0
.0046 0 0
0 0.0750 -0.0750
0 -0.0750 0.0750
[Ktotal] =
0.0017 -0.0046 0 0
-0.0009 -0.0046 0 0
0 0 -0.0469 -0.0750
0.0017 0 0 0
0 -0.0046 0 0
0.0009 0 0 0
0 0.0046 0 0
0 0 0.0469 0
0 0 0 0.0750
[Kuu]
[KuuInverse] =
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Restrained Stiffness sub-matrix, [Krr] =
0.0046 0 0.0017 0 0 0
0 0.0062 0 -0.0046 0 0
0.0017 0 0.0009 0 0 0
0 -0.0046 0 0.0046 0 0
0 0 0 0 0.0469 0
0 0 0 0 0 0.0750
[Kur] =
0.0023 0.0031 0.0017 -0.0046 0 0
-0.0017 0.0046 -0.0009 -0.0046 0 0
0 0 0 0 -0.0469 -0.0750
[Kru] =
0.0023 -0.0017 0
0.0031 0.0046 0
0.0017 -0.0009 0
-0.0046 -0.0046 0
0 0 -0.0469
0 0 -0.0750
Modified Stiffness matrix =
0.0030 0.0012 0.0007 -0.0007 0 0
0.0012 0.0022 0.0006 -0.0006 0 0
0.0007 0.0006 0.0002 -0.0002 0 0
-0.0007 -0.0006 -0.0002 0.0002 0 0
0 0 0 0 0.0288 -0.0288
0 0 0 0 -0.0288 0.0288
Joint Load vector, [Jl] =
26.6700 -40.0000 0 -26.6700 0 -40.0000 0 0
Unrestrained displacements, [DelU] =
1.0e+03 *
5.1202 -9.9388 0
Rr vector =
55.9053 -30.3426 57.5938 22.4062 0 0
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Member Number = 1
Global displacement matrix [DeltaBar]

1.0e+03 *
0 5.1202 0 -9.9388 0 0

Global End moment matrix [MBar] =

55.9053 14.4698 57.5938 22.4062 0 O

Member Number = 2
Global displacement matrix [DeltaBar]

1.0e+03 *
5.1202 0 -9.9388 0 0 0

Global End moment matrix [MBar] =

-14.4698 -30.3426 -22.4062 22.4062 0 O

Joint forces =

0 -0.0000 O 55.9053 -30.3426 57.5938 22.4062 0 O
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Appendix

STIFFNESS MATRIX DERIVATION USING THE ENERGY METHOD

The energy method is the basis for the derivation of the member stiffness matrix.
This method can be applied to analyze structures with any geometric shape. The
major assumption made in this method is that the members does not have any geo-
metric non-linearity or P-A effect. Based on this assumption, the following assump-
tion is valid:

== (A))

where,
y is the displacement,
M is the moment and
EI is the flexural rigidity.

The same equation can be extended to standard potential energy. The principle of
stationary potential energy states that, “When a system is in a state of equilibrium,
the first derivative of the local potential energy of the structural system with respect
to the joint displacement is zero.” Mathematically this can be expressed as,

‘1:0, for j=1,2,...n (A2)
odj

where,
V' is the total potential energy,
dj 1is the joint displacement and
j is the number of joints in the structure.

The total potential energy has two components such as external potential energy
and internal potential energy. It is given by,

V =W + Wip, (A-3)

The external potential energy is the sum of the products of applied loads and cor-
responding displacements in the structure. Thus,

Wee =D P, (A4)
j=1

221
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where,
P; is the applied load at point j and
8; is the displacement at point j in the direction of P;.
The internal potential energy is the sum of the products of internal stresses and
strains. Mathematically,

€
Wi = ch*da*dv (A.5)
vol 0
where,
c is the stress at any internal point,
de is the strain at the same point and

€
I c*de represents the amount of internal energy created at any point in a sys-
0 tem that has unit volume.

To apply this equation for the analysis of the structure, the volume of the structure
should be known, which is very hard to find for non-rectilinear members. Thus, a
different method or analogy is used for solving the problem.

Alternatively, internal potential energy is also equivalent to the internal work
done. Internal work performed on a system stores energy in the system. This is com-
monly known as strain energy, U. Internal potential energy and strain energy are
related as follows:

Wine ==U (A.6)
Substituting equation A.6 in equation A.3,
V=W,-U (A7)

Substituting equation A.7 in equation A.2,

i.(VVext_U):O
odj

or
3 I] ext .

This equation is used to find the elements of the stiffness matrix.

A.1  AXIAL STRAIN ENERGY

Axial strain energy is the primary type of strain energy stored in members under axial
forces like truss members. Consider a truss member of length ‘I’ and cross-sectional
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area ‘A’ with nodes j and k. The member is oriented along the X-axis, as shown in
Figure A.1.

The member is displaced along the direction of the X-axis with displacements J,
and §, at nodes j and k respectively. The displaced position of the truss member is
shown in Figure A.1.

Axial strain energy stored in the member is given by,

ax1a 77(1}( A9
ey (A9)

Considering uniform AE throughout the section,

NZ
Upia = —— L A.10
4= E (A.10)

By considering the axial displacements at both the nodes, the net elongation is given by,
e=0,—-9, (A.1D

For uniform extension of the member under the axial load, the net elongation is given by,

NL
AE

Y
‘@ SC/IITM ®

....__,......_

@ SC/MTM &) <

FIGURE A.1 Original and displaced position of member.
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Substituting equation A.12b in equation A.10, the axial strain energy for uniform

cross-section is given by,
AENT L
Uaxial =€
L 2AE

eZ

Ui = —— AE A3
=7 (A.13)

Substituting equation A.11 in equation A.13,

AE
2L

2

Usia = (8, =5,) (A.13a)

A.2 BENDING STRAIN ENERGY
Bending strain energy is the primary type of energy stored in beams and frames.
Bending strain energy is given by,
L
M*dx
2EI
o

(A.14)

Ubending =

where,
M is the moment causing bending on the ith member, as shown in Figure A.2.

The elastic curve is related to the loading diagram or the applied moment by the
following relationship:

d 2y
El—=M A.15
I ( )
S
M,,C » SC/IITM [E]] P
L L ]
7/ M,
/)
SC/IITM 7 /
L
MP

FIGURE A.2 Loading and bending moment diagram.
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Substituting equation A.15 in equation A.14, we get

Ubending =

E

Q Sy

EI

dzy_
de

12
&y

(A.16)

2 dx* |

|

The previous equation is valid for members with non-varying EI. Now, the previous
equation should be expressed in terms of displacements mentioned in the deflected

profile in Figure A.3.

Consider a beam of length ‘L’ with a uniformly distributed load of ‘w’ for the
entire length. The member is oriented along the X-axis. M, is the moment at the jth
end, M, is the moment at the kth end, P, is the reaction at the jth end and P, is the
reaction at the kth end. The corresponding displacements at j and k ends are shown

in the elastic curve.

Consider a section X-X at a distance ‘x’ from the jth end of the member. The

moment at the section is taken as ‘M’. Taking
of the section,

Rearranging the previous equation,

wx

oot

2

M -

p

the moment about X-X from the left

J+M =0

Mq
C iHEEEEEEEEEEEEEEEEEEEEE )
[EI]  SCITM
M," P x Fs
L ]
z,k"
Y 55
PNANG SC/ITM X
J 5

FIGURE A.3 Loading diagram and elastic curve.
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2
M+M, —P,(x)—[ng =0 (A.17)
2
M=-M,+P(x)+ (W;J (A.172)

Substituting equation A.17a in equation A.15,

d*y wx?

[dzyJ _ M, B () +(WX2J (A.17b)

a’ ) El EL\2EI

By integrating the previous equation once, we will get the slope equation.

P(x* 3
(@J:_MPH (x L(Wx}cl (A.18)

dx EI 2EI 6EI

The following boundary conditions are applied in the previous equation to get the
value of the constant.

L. L4 =0, at x=0.
dx
2. y=9,atx=0.
Substituting x=0 in equation A.18,
C] = ep

By substituting the value of the constant in equation A.18, the slope equation is

given by,
P (x* :
(dyj:_ﬂb{;,ﬁ ( ){W}rep (A.19)

dx 2EI 6El

The previous equation is again integrated to get the equation for displacement,

3
M B (x 4
y=——Lx*+ ( )+[ w j+9,,x+Cz

EI 6El 24EI

Again applying the boundary conditions to get the value of the constant in the dis-
placement equation,
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Hence,

3
M F(x 4
y=8,+0,x—— L x>+ ( )+ w
2EI 6EI 24EI
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(A.20)

Now, the following set of boundary conditions are applied in equations A.19 and

A.20,
L. a_ 0, atx=L.
dx
2. y=93,atx=L.

Equation A.19 becomes,

R(L }
Oqzep—%L+ ( )+ WL
EI 2EI 6El

Equation A.20 becomes,

p(C 4
5, =5, +0,L— r 2y ( ){WLJ

2EI 6EI 24E1

Rewriting equations A.19a and A.20a as follows:
3
Ly, BLi_g —o,+ M2
EI 2 6El

2 4
Ly, BLlos s 40,0+ WE
2EI 2 24E1

The previous equations are solved to get M, and P, as follows:

2
M, =EL 40,120, + 50 00 | [ WL
L L L] 12

Pr:g 9p+9q+28r_26S - LL
L L L 2

(A.192)

(A.20a)

(A.21)

(A.22)

Equations A.21 and A.22 give the stiffness coefficients of the first and third column

of the stiffness matrix, respectively.
Thus at jth end of the member,

2
M1,=ﬂ 49,,+29q+66’—® | WE
L L L 12

(A.23)
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6EI 25, 25, (wL
P="0010,+0,+ 7 =0 | | A24
r { L L } ( 2 j (429

Similarly, at kth end,

2
M, =520, +40,+ 00 0% || WD (A.25)

L L L](12
poSEl[ g o 28 28, (WL A26)

r L L 2

: , L :
In the previous equations, Ml}—z is the fixed end moment of the member with udl

under consideration and wL/2 is the reaction.
Substituting equations A.23 and A.24 in equation A.20, we get

y=90,+6,x— [EI|:49 20, + 69, 68] FEM:|
2EI L L

x> | 6EI 20, 20, wL wxt
+——5-9,-96,- + | — ||+
6El| L L L 2 24EI
The previously mentioned is rearranged in such a way by retaining the displacement
parameters and replacing the remaining terms with an arbitrary function G(x). G(x)
is not a function of displacement and hence, on differentiation with respect to any

displacement, will become zero.
Thus, equation A.27 becomes

2 3
y:6,+9px—’z{2e,,+eq+ 35* - 32"}1’;{9 +0,+ 2L5’ —22“}+G(x)

(A.27)

On differentiation,

2x 35, 35, 3x° 25, 25,
y=0 —{26 +0,+ .1 }+Ez[ep+6q+ L L }+G( ) (A.28)
.2 35, 35, 6x 25, 25,1 .

The square of the previously mentioned term should be used in the equation for
bending to get the bending strain energy. This process will be cumbersome and
hence the following analogy is followed. The displacement is separated into two
terms as mentioned subsequently:

y=y+tys
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where,

_ 2 3
v=5, +e,,x—x[2ep 1,4+ 0 _ 385}"[9,) v, + 20 _2&}
L L L L] (A30

L | I
vy =G(x)
Thus,
Y=Y+
Y =y 4] (A31)

Substituting equation A.31 in equation A.16,
EI r
— 2
Ubending = TJ‘[)} +yf] dx
0

(7 + (7 + 23757 a

11
N‘E
Q ey~

S

L
=7;jpr+5+142u
]

where,
I, is the function of displacement. The integral of functions 7, and I; will
become zero.

Hence, the bending strain energy can be written as follows:

L
EI
2
0

Ubending =

(Vfdx+c (A32)

Now, the previous equation is a function of displacement only. From equation A.29,

b2 35, 35, |, 6x 28, 29,
y :—L[29p+9q+ . }+Lz{9p+9q+ - L}

Substituting the previous equation in the bending strain energy equation A.32, we
will get,

U bending — E[

0,+0,0,+6,] +%[(e,, +0,)(5.-3,)] +%(5, ~5,)+C (A33)

The previous equation is used for developing the stiffness matrix of a member.
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For the member, the external work done is given by,
Wew = D P3,
j=1
Thus,
W =M 0, + M0, + P3, + P3; (A.34)

From equation A.7, the stationary potential energy is given by,
V=Wu-U

The differential of the stationary potential energy equation will give a series of
equations from which the stiffness matrix of the member can be developed.
The equations are as follows:

gg;:2?:(29,,+eq)+134(5,—55):—Mp -0
ggz:2LEI:(9p+294)+2(8r—5s):—Mq -0
S;ZZLE’B(GP +6q)+L62(6,—85)}—P, 0
Sgizzfl{—z(ep +0,) -5, —ax)}—a -0

Writing the previous equations in matrix form,

4 2 6 6

L L
> 4 &8 O (M
EI L L |9 _|M,
L| 6 6 12 12118 | P
L L r L |s, P,

6 6 2 12
L L L I r
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Thus, from the previous matrix equation, the stiffness matrix of the member can
be written as follows:

4EI  2EI 6El 6EI |
L L r r
2EI  4EI 6El 6EI
| L L r r
6El  6EI  12EI 12E1
r  r r r
6El  6EI  12EI  12EI
T r r
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Analysis of special members
example problem, 210-219
non-prismatic members, 209
substructure technique, 209
special elements, 207-209
moment of inertia, 208
Young’s modulus, 208
three-dimensional analysis of truss
structures, 205-207
Axial deformation, 71

C

Continuous beam, 3
Cross-partitioning, 10—12
E

End moments and end shear, 79-80

F

FEM, see fixed end moments (FEM)
Fixed end moments (FEM), 78-79
Flexibility approach, 2

Flexural rigidity, 22-27

G

Global stiffness matrix, 76—77

K

Kinematic indeterminacy, 2—-5
stiffness approach, 2
continuous beam, 3
fixed beam, 3—4
frame, 4-5
simply supported beam, 4

L

Linear equations, 5-8
Local axes, 77

M

Matrix operations, 8—12
banded, 12

cross-partitioning, 10—12

partitioning, 10

submatrix, 8—10
Moment of inertia, 208

N

Non-prismatic members, 209
substructure technique, 209

P

Planar non-orthogonal structures
analysis, 77-80
degrees-of-freedom, 78

end moments and end shear, 79-80
fixed end moments (FEM), 78-79

local axes, 77

reference axes, 77

stiffness matrix, 78

transformation matrix

coefficients, 78

example problems, 80—121
global stiffness matrix, 76—77
overview, 67-69

stiffness matrix formulation, 69-71

axial deformation, 71
transformation matrix, 71-73
end moments, for, 73-75
Planar orthogonal structures
example problems, 30—-67

continuous beam, 30-38, 38—42
orthogonal frame, 42-50, 50-54

step frame, 55—60, 61-66

flexural rigidity, varying, 22-27

rotational coefficients, 27
stiffness matrix, 22, 27-30
indeterminacy, 1-5
kinematic, 2-5
static, 2
linear equations, 5—-8
inverse of matrix, 6-7
solution, 7-8
matrix operations, 8—12
banded, 12
cross-partitioning, 10—12
partitioning, 10
submatrix, 8—10
overview, 1
rotational coefficients, 19-22
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standard beam element, 12—-19
static degree-of-freedom, 14
Planar truss system
example problems, 125-157
overview, 123
stiffness matrix, 124
transformation matrix, 123—-124

R

Rotational coefficients, 19-22

S

Standard beam element, 12—-19
Static indeterminacy, 2

flexibility approach, 2
Stiffness approach

continuous beam, 3

fixed beam, 3—4

frame, 4-5

simply supported beam, 4
Stiffness matrix, 22, 27-30
Substructure technique, 209
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T

Three-dimensional analysis of space frames
Y angle, 173-174
analysis, 174177
Y angle, 174
direction cosines, 174
beam element, 159—160
example problems, 178-204
member rotation matrix, 166—168
overview, 159
right-hand thumb rule, 159
stiffness matrix, 160—164
transformation matrix, 164—166
direction cosines, 165
Y-Z-X transformation, 168—171
rotation matrix, 171
7-Y-X transformation, 172—173
Three-dimensional analysis of truss structures,
205-207
Transformation matrix coefficients, 78

Y

Young’s modulus, 208
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